[paper note]LoRA+: 原理分析

本文提出LoRA+算法,通过为LoRA的适应器矩阵设置不同的学习率,解决了大宽度模型中LoRA的次优问题,实验证明LoRA+在性能和训练速度上优于标准LoRA,尤其是在处理复杂任务时。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

论文信息

论文标题:LoRA+: Efficient Low Rank Adaptation of Large Models

发表时间:2024年2月

论文内容

摘要

在本文中,我们表明,最初在论文《LoRA: Low-Rank Adaptation of Large Language Models》中引入的低秩适应(LoRA)会导致大宽度(嵌入维度)模型的次优微调。这是因为 LoRA 中的适配器矩阵 A 和 B 以相同的学习率更新。使用大宽度网络的缩放参数,我们证明对 A 和 B 使用相同的学习率并不能实现有效的特征学习。然后我们证明,只需通过精心选择的固定比率为 LoRA 适配器矩阵 A 和 B 设置不同的学习率,即可纠正 LoRA 的这种次优性。我们将此算法称为 LoRA+。在我们广泛的实验中,LoRA+ 提高了性能(1% ‑ 2% 的改进)和微调速度(高达 ~ 2 倍加速),而计算成本与 LoRA 相同。

主要结论

定理 1: (高效 LoRA(非正式))。假设权重矩阵 A 和 B 使用 Adam 进行训练,学习率分别为 η A η_A ηA η B η_B ηB。那么,不可能达到 η A = η B η_A = η_B ηA=ηB 的效率。然而,LoRA 微调在$η_A = θ(n^{-1} ) $ 和 η B = θ ( 1 ) η_B = θ(1) ηB=θ(1)时非常有效。

定理1的结果表明,只有一对满足 η B η A = θ ( n ) \frac{η_B}{η_A} = θ(n) ηAηB=θ(n)的学习率才能实现效率。在实践中,这转化为设置 η B ≫ η A η_B ≫ η_A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值