背景
以微软的 GragpRAG
为例,介绍微软在召回时的机制。
原理说明
微软的 GragpRAG
同样也是使用了语义相似度对实体内容进行了召回。
- 使用语义相似度,将问题向量和实体描述的向量进行匹配,并取前20个实体作为备选
- 根据实体所在的社区(community),找到对应的社区,并将社区摘要(report)加入到prompt中,直到达到token上限(4000)
- 根据提取的实体,获取实体的关系,并按照关系的权重排序;每个实体最多取10个关系
- 按照语义相似度获取原文,按照相似度排序;将原文片段加入prompt中,直到达到token上限(8000)
- 将以上信息,放入prompt中,然后送给大模型进行问题回答