【学习记录】Uint16Bit图像,pytorch与tensorflow的区别

记录一下pytorch和tensorflow两个框架处理uint16bit图片tensor张量的过程。

1.pytorch

pytorch不支持无符号int16的的张量,只有int16,int8,int24等tensor的格式,所以不能用pytorch实现16位图片进行深度学习,只能将16bit图片转化为8bit图片,才可以进行。

2.tensorflow

tensorflow可以可以实现uint16bit的张量计算,说明可以将uint16bit图片进行深度学习,可以直接将图片使用numpy或者PIL.Image读取图片,实测过程中numpy读取图片时最后几行像素会跑到前面几行去,原因未知。

3.图片读取与转换为tensor

from PIL import Image
import numpy as np
import tensorflow as tf
import cv2

PATH='raw.tif'

#Numpy读取
img=np.memmap(PATH,dtype=np.uint16,shape=(4288,3524))
img=np.array(img)
print(img)
cv2.imshow('img_np',img)

print('-------------------------------------------------------------')

#PIL读取
img1=Image.open(PATH)
img1_np=np.array(img1)

cv2.imshow('img_PIL',img1_np)
cv2.waitKey(0)
print(img1_np)

#转换为tensor
tensor=tf.convert_to_tensor(img1)
p
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值