GitHub上的DeepStream参考应用程序

本文介绍了GitHub上的DeepStream参考应用程序,包括360度智能停车用例,探讨了DeepStream的AI模型及其功能样本,并涉及DeepStream与ROS的集成,特别是DeepStream5.0在yolov5模型的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用例应用

*“ 360度端到端智能停车应用程序”。
感知+分析 <https://github.com/NVIDIA-AI-IOT/deepstream_360_d_smart_parking_application/tree/master/analytics_server_docker/kafka>
*面罩检测(TLT + DeepStream) <https://github.com/NVIDIA-AI-IOT/face-mask-detection>

*使用DeepStream进行修订<https://github.com/NVIDIA-AI-IOT/redaction_with_deepstream>_
*使用RetinaNet进行面部修饰<https://github.com/NVIDIA-AI-IOT/retinanet_for_redaction_with_deepstream>_
*使用DeepStream进行人数统计<https://github.com/NVIDIA-AI-IOT/deepstream-occupancy-analytics>

*DeepStream姿势估计<https://github.com/NVIDIA-AI-IOT/deepstream_pose_estimation>_
*DeepStream车牌检测和识别<https://github.com/NVIDIA-AI-IOT/deepstream_lpr_app>_

DeepStream的AI模型

*带有DeepStream的YoloV4 <https://github.com/NVIDIA-AI-IOT/yolov4_deepstream>

*使用Triton和DeepStream部署TensorFlow FasterRCNN模型<https://github.com/NVIDIA-AI-IOT/deepstream_triton_model_deploy>
*DeepStream中的TLT模型部署<https://github.com/NVIDIA-AI-IOT/deepstream_tlt_apps>

DeepStream功能样本

*使用DeepStream的背对背检测器<https://github.com/NVIDIA-AI-IOT/deepstream_reference_apps/tree/master/back-to-back-detectors> _
*使用DeepStream添加/删除运行时源 <https://github.com/NVIDIA-AI-IOT/deepstream_reference_apps/tree/master/runtime_source_add_delete>
*使用DeepStream使用NV Optical Flow进行异常检测<https://github.com/NVIDIA-AI-IOT/deepstream_reference_apps/tree/master/anomaly>_
*Python DeepStream应用程序(Python)中对SSD模型的自定义后处理<https://github.com/NVIDIA-AI-IOT/deepstream_python_apps/tree/master/apps/deepstream-ssd-parser>_
*从DeepStream管道(Python)中保存图像元数据<https://github.com/NVIDIA-AI-IOT/deepstream_python_apps/tree/master/apps/deepstream-imagedata-multistream> _

深度流ROS

*DeepStream应用程序的ROS2节点<https://github.com/NVIDIA-AI-IOT/ros2_deepstream> _

DeepStream5.0系列之yolov5使用
https://zongxp.blog.csdn.net/article/details/109444343

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值