VGGNet---网络进一步加深

完整代码:VGGNet实现完整代码

VGGNet

VGGNet由牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司研究员一起研发的深度卷积神经网络。VGGNet获得了ILSVRC 2014年比赛的亚军和定位项目的冠军,在top5上的错误率为7.5%。它主要的贡献是展示出网络的深度(depth)是算法优良性能的关键部分。VGGNet作者总结出LRN层作用不大。
论文:Very Deep Convolutional Networks for Large-Scale Image Recognition

VGGNet结构图

VGGNet的网络结构如下图所示,VGGNet包含多层网络,深度从11层到19层不等,较为常用的是VGG16和VGG19。
在这里插入图片描述
VGGNet参数表
在这里插入图片描述
接下来我们以VGG16为例,即上图中的D,介绍VGGNet。

操作输入数据维度输出数据维度卷积核卷积步长池化核大小池化步长填充激活函数
输入层(224,224,3)
卷积层(224,224,3)(224,224,64)(3,3,64)1samerelu
卷积层(224,224,64)(224,224,64)(3,3,64)1samerelu
最大池化层(224,224,64)(112,112,64)(2,2)2valid
卷积层(112,112,64)(112,112,128)(3,3,128)1samerelu
卷积层(112,112,128)(112,112,128)(3,3,128)1samerelu
最大池化层(112,112,128)(56,56,128)(2,2)2valid
卷积层(56,56,128)(56,56,256)(3,3,256)1samerelu
卷积层(56,56,256)(56,56,256)(3,3,256)1samerelu
卷积层(56,56,256)(56,56,256)(3,3,256)1samerelu
最大池化层(56,56,256)(28,28,256)(2,2)2valid
卷积层(28,28,256)(28,28,512)(3,3,512)1samerelu
卷积层(28,28,512)(28,28,512)(3,3,512)1samerelu
卷积层(28,28,512)(28,28,512)(3,3,512)1samerelu
最大池化层(28,28,512)(14,14,512)(2,2)2valid
卷积层(14,14,512)(14,14,512)(3,3,512)1samerelu
卷积层(14,14,512)(14,14,512)(3,3,512)1samerelu
卷积层(14,14,512)(14,14,512)(3,3,512)1samerelu
最大池化层(14,14,512)(7,7,512)(2,2)2valid
全连接层(25088,)(4096,)relu
全连接层(4096,)(4096,)relu
全连接层(输出层)(4096,)(1000,)softmax

VGGNet特点

  1. VGGNet全部使用 ( 3 , 3 ) (3,3) (3,3)的卷积核和 ( 2 , 2 ) (2,2) (2,2)的池化核,通过不断加深网络深度来提升网络性能。作者认为,两个 ( 3 , 3 ) (3,3) (3,3)卷积层的串联相当于1个 ( 5 , 5 ) (5,5) (5,5)的卷积层,3个 ( 3 , 3 ) (3,3) (3,3)的卷积层串联相当于1个 ( 7 , 7 ) (7,7) (7,7)的卷积层,即3个 ( 3 , 3 ) (3,3) (3,3)卷积层的感受野大小相当于1个 ( 7 , 7 ) (7,7) (7,7)的卷积层。但是3个 ( 3 , 3 ) (3,3) (3,3)的卷积层参数量只有 ( 7 , 7 ) (7,7) (7,7)的一半左右,同时前者可以有3个非线性操作,而后者只有1个非线性操作,这样使得前者对于特征的学习能力更强。
  2. VGGNet的显著特点:特征图的空间分辨率单调递减,特征图的通道数单调递增。
  3. 由于参数量主要集中在最后的三个FC当中,所以网络加深并不会带来参数爆炸的问题;
  4. VGG由于层数多而且最后的三个全连接层参数众多,导致其占用了更多的内存(140M)
    其他小的特点:VGGNet在训练的时候先训级别A的简单网络,再复用A网络的权重来初始化后面的几个复杂模型,这样收敛速度更快。

keras实现VGG16

import os
from keras import layers
from keras import models


def VGG16(input_shape=None, classes=None):
    img_input = layers.Input(shape=input_shape)
    # Block 1
    x = layers.Conv2D(64, (3, 3),activation='relu',padding='same',name='block1_conv1')(img_input)
    x = layers.Conv2D(64, (3, 3),activation='relu',padding='same',name='block1_conv2')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

    # Block 2
    x = layers.Conv2D(128, (3, 3),activation='relu',padding='same',name='block2_conv1')(x)
    x = layers.Conv2D(128, (3, 3),activation='relu',padding='same',name='block2_conv2')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

    # Block 3
    x = layers.Conv2D(256, (3, 3),activation='relu',padding='same',name='block3_conv1')(x)
    x = layers.Conv2D(256, (3, 3),activation='relu',padding='same',name='block3_conv2')(x)
    x = layers.Conv2D(256, (3, 3),activation='relu',padding='same',name='block3_conv3')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

    # Block 4
    x = layers.Conv2D(512, (3, 3),activation='relu',padding='same',name='block4_conv1')(x)
    x = layers.Conv2D(512, (3, 3),activation='relu',padding='same',name='block4_conv2')(x)
    x = layers.Conv2D(512, (3, 3),activation='relu',padding='same',name='block4_conv3')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

    # Block 5
    x = layers.Conv2D(512, (3, 3),activation='relu',padding='same',name='block5_conv1')(x)
    x = layers.Conv2D(512, (3, 3),activation='relu',padding='same',name='block5_conv2')(x)
    x = layers.Conv2D(512, (3, 3),activation='relu',padding='same',name='block5_conv3')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

    x = layers.Flatten(name='flatten')(x)
    x = layers.Dense(4096, activation='relu', name='fc1')(x)
    x = layers.Dense(4096, activation='relu', name='fc2')(x)
    x = layers.Dense(classes, activation='softmax', name='predictions')(x)

    # Create model.
    model = models.Model(img_input, x, name='vgg16')
    return model

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值