- 博客(22)
- 收藏
- 关注
原创 深度学习中的autograd与jacobian
对于一个很简单的例子,如下图所示,对于一个神经元z,接收数据x作为输入,经过激活函数,获得激活后的结果,最后利用损失函数获得损失,然后梯度反向回传。上图右侧即梯度反向回传的过程,其中字母上加一条线代表损失函数对该参数的偏导。
2025-05-07 21:41:34
1090
原创 一文详解极大似然估计,从极大似然估计的角度理解线性回归
似然估计与我们熟知的概率问题是一个相反过程,概率是指当我们知道一些条件或者参数,来预测某件事情发生的概率,例如,当我们知道了天气,温度等来预测晾衣服的概率。再例如抛硬币,我们已知的条件是硬币材质均匀,大小均匀,因此可以预测正面朝上的概率是0.5,反面朝上的概率是0.5而似然是一个相反的过程,还是抛硬币的例子,现在我们假设抛10000次硬币,其中8000次人像朝上,2000次数字朝上,基于这个结果,我们推断,硬币可能构造特殊。进而推测硬币的参数,人像概率是0.8,数字概率是0.2。
2025-05-07 15:57:50
848
原创 客户机用vscode连接局域网内主机
SSH分为客户端 openssh-client 和服务器 openssh-server,如果只是登录其他机器则只需要安装openssh-client,如果想通过其他机器登录本台机器,则需要安装 openssh-server。ubuntu默认安装了openssh-client。
2025-04-02 12:03:10
389
原创 深入理解贝尔曼公式(state value、Bellman equation)
深入讲解强化学习中的state value、action value、贝尔曼公式
2025-03-01 19:48:35
927
原创 一文深刻理解BN、LN、IN、GN、WN五种归一化方式的原理及代码实现
对五种常见的Normalization方式(BN、LN、IN、GN、WN)进行清晰明了的介绍,帮助你更快更好地理解相关内容
2025-02-18 21:16:46
944
原创 强化学习基本概念(state、Action、Policy、Reward、Trajectory、Return、Discounted Return、Episode)
针对强化学习中的基本概念进行介绍与理解,深入浅出理解强化学习中的十个关键概念
2025-02-16 23:03:48
995
原创 ubuntu24.04配置vscode、anaconda、cuda、cudnn、pytorch
一文速通ubuntu24.04下vsode、anaconda、cuda、cudnn、pytorch安装
2024-12-09 20:55:44
581
原创 ubuntu24.04安装搜狗输入法(解决系统自带的fitcx5与搜狗输入法的依赖fcitx (>= 1:4.2.8) 冲突的问题)
本文基本上是基于创作的,进行了些许的补充。部分ubuntu24.04系统之所以安装不上搜狗输入法,主要是因为自带的fitcx5与搜狗输入法的依赖冲突。
2024-12-09 17:15:18
1728
原创 彻底解决安装向日葵的各种问题(未安装libgconf-2-4、windows连接ubuntu系统一直卡在正在建立远程连接等问题)
解决ubuntu向日葵安装遇到的问题
2024-12-06 16:29:50
4705
1
原创 rolabelImg标注的旋转框标签文件转换成labelImg标注的垂直框标签文件
【代码】rolabelImg标注的旋转框标签文件转换成labelImg标注的垂直框标签文件。
2024-11-14 15:53:09
158
1
原创 conda基本操作
有些时候已经配置好了虚拟环境中的各种依赖和包,可以直接使用,但是为了防止某些项目的依赖包版本和已配置好的包有冲突,另一方面重新配置依赖包又比较麻烦,因此可以将已经配置好的环境复制一份,在备份上进行某些包的版本变更。然后根据自己的cuda版本去pytorch官网找对应的pytorch版本,建议通过conda命令安装。安装好之后通过以下命令来查看 pytorch 是否可用及对应的版本号。首先查看自己服务器的cuda版本。
2024-07-05 10:38:30
224
原创 python中的类变量、类方法、及静态方法
以一个简单的学生实例创建为例,实现每创建一个学生实例,学生数量就+1的功能,以下代码分析了对类变量两种访问方式的区别,第一种是通过实例来访问,第二种通过类本身来访问。
2024-06-27 16:50:04
639
原创 SVM的直观理解
对数据进行分类。如图1场景,在这个二维空间中,怎么样才算是比较好的数据分类情况呢?图1毫无疑问,应该是红色实线是较为理想的分类方式。试想在蓝色和绿色分类的情况下,如果现在新进来一个数据,靠近边界线,那么这个数据被错误分类的可能性会非常大,但是如果是红线分类的情况下,就会有一个相对较大的缓冲区(也被称为margin),也可以理解为容错区域。如图2所示。这个间隔会将两类数据所处的空间分隔开,这个间隔可以体现两类数据的差异大小。
2023-12-13 23:52:03
643
原创 vscode 远程ssh连接指南(包含Bad owner or permissions on C:\\Users\\prominent/.ssh/config以及管道错误的解决方案)
vscode 远程ssh连接指南(包含Bad owner or permissions on C:\\Users\\prominent/.ssh/config以及管道错误的解决方案)
2023-03-14 20:12:48
1316
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人