不可约多项式及本原多项式(包含大量计算例子)

本文介绍了多项式的概念,包括加法、乘法和除法,并通过示例进行了操作演示。讨论了有限域上的多项式,特别是GF(2^n)上的不可约多项式和本原多项式,提供了计算不可约多项式个数的公式。此外,还解释了如何判断一个多项式是否为本原多项式,并列举了一些低阶本原多项式。
摘要由CSDN通过智能技术生成

多项式

多项式是一个或多个带有系数的变量的幂运算之和的数学表达式,只有一个变量的多项式可以表示为 a n x n + ⋯ + a 1 x + a 0 a_nx^n+\cdots+a_1x+a_0 anxn++a1x+a0,多项式变量的最高次数称为多项式的阶。
对任意一个多项式 P ( x ) P(x) P(x),其中 P ( x ) ≠ 0 P(x)\ne 0 P(x)=0,即常数项不为0,可以表示为
P ( x ) = P ( 0 ) ∏ ρ ∈ X ( 1 − x ρ ) P(x)=P(0)\prod_{\rho \in \mathbb{X}}(1-\frac{x}{\rho}) P(x)=P(0)ρX(1ρx) ρ \rho ρ是方程 P ( x ) = 0 P(x)=0 P(x)=0的根,即 P ( ρ ) = 0 P(\rho)=0 P(ρ)=0
例如对于多项式 P ( x ) = x 6 − 2 x 4 + 2 x 2 − 1 P(x)=x^6-2x^4+2x^2-1 P(x)=x62x4+2x21
在有理数域上可以分解为 P ( x ) = ( x + 1 ) ( x − 1 ) ( x 4 − x 2 + 1 ) P(x)=(x+1)(x-1)(x^4-x^2+1) P(x)=(x+1)(x1)(x4x2+1)
在实数域上可以分解为 P ( x ) = ( x + 1 ) ( x − 1 ) ( x 2 − 3 x + 1 ) ( x 2 + 3 x + 1 ) P(x)=(x+1)(x-1)(x^2-\sqrt{3}x+1)(x^2+\sqrt{3}x+1) P(x)=(x+1)(x1)(x23 x+1)(x2+3 x+1)
在复数域上可以分解为 P ( x ) = ( x + 1 ) ( x − 1 ) ( x − 3 + i 2 ) ( x − 3 − i 2 ) ( x + 3 + i 2 ) ( x + 3 − i 2 ) P(x)=(x+1)(x-1)(x-\frac{\sqrt{3}+i}{2})(x-\frac{\sqrt{3}-i}{2})(x+\frac{\sqrt{3}+i}{2})(x+\frac{\sqrt{3}-i}{2}) P(x)=(x+1)(x1)(x23 +i)(x23 i)(x+23 +i)(x+23 i)

多项式加法案例

P ( x ) = x 3 + x 2 + 4 x − 3 P(x)=x^3+x^2+4x-3 P(x)=x3+x2+4x3
Q ( x ) = 2 x 2 − 3 x + 5 Q(x)=2x^2-3x+5 Q(x)=2x23x+5
P ( x ) + Q ( x ) = x 3 + ( 2 + 1 ) x 2 + ( 4 − 3 ) x + ( − 3 + 5 ) = x 3 + 3 x 2 + x + 2 P(x)+Q(x)=x^3+(2+1)x^2+(4-3)x+(-3+5)=x^3+3x^2+x+2 P(x)+Q(x)=x3+(2+1)x2+(43)x+(3+5)=x3+3x2+x+2

多项式乘法案例

P ( x ) = x 3 + x 2 + 4 x − 3 P(x)=x^3+x^2+4x-3 P(x)=x3+x2+4x3
Q ( x ) = 2 x 2 − 3 x + 5 Q(x)=2x^2-3x+5 Q(x)=2x23x+5
P ( x ) Q ( x ) = 2 x 5 + ( − 3 + 2 ) x 4 + ( 5 − 3 + 8 ) x 3 + ( − 6 − 12 + 5 ) x 2 + ( 20 + 9 ) x − 15 = 2 x 5 − x 4 + 10 x 3 − 13 x 2 + 29 x − 15 P(x)Q(x)=2x^5+(-3+2)x^4+(5-3+8)x^3+(-6-12+5)x^2+(20+9)x-15=2x^5-x^4+10x^3-13x^2+29x-15 P(x)Q(x)=2x5+(3+2)x4+(53+8)x3+(612+5)x2+(20+9)x15=2x5x4+10x313x2+29x15

多项式除法案例

定义多项式 p ( x ) p(x) p(x) q ( x ) q(x) q(x),多项式的商为 Q ( x ) Q(x) Q(x),多项式的余项为 R ( x ) R(x) R(x),其中存在关系: p ( x ) = Q ( x ) q ( x ) + R ( x ) p(x)=Q(x)q(x)+R(x) p(x)=Q(x)q(x)+R(x),即 R ( x ) ≡ p ( x ) m o d    q ( x ) R(x)\equiv p(x) \mod q(x) R(x)p(x)modq(x)
如对于 p ( x ) = x 4 + x 3 + x 2 + x + 1 p(x)=x^4+x^3+x^2+x+1 p(x)=x4+x3+x2+x+1 q ( x ) = x 2 − 1 q(x)=x^2-1 q(x)=x21 Q ( x ) = x 2 + x + 2 Q(x)=x^2+x+2 Q(x)=x2+x+2 R ( x ) = 2 x + 3 R(x)=2x+3 R(x)=2x+3,
2 x + 3 ≡ x 4 + x 3 + x 2 + x + 1 m o d    x 2 − 1 2x+3\equiv x^4+x^3+x^2+x+1 \mod x^2-1 2x+3x4+x3+x2+x+1modx21
计算过程如下。

在这里插入图片描述
需要更多计算案例,可以自己设置多项式,用这个网站进行测试验证。

有限域

建议了解有限域的知识后再来理解不可约多项式,关于有限域的内容,可以查看这篇博客

有限域 P ( 2 w ) P(2^w) P(2w)上的多项式运算

P ( 2 w ) P(2^w) P(2w),是最为常见的有限域,故以此有限域进行运算举例。
继续借用上面的例子,对于
P ( x ) = x 3 + x 2 + 4 x − 3 P(x)=x^3+x^2+4x-3 P(x)=x3+x2+4x3
Q ( x ) = 2 x 2 − 3 x + 5 Q(x)=2x^2-3x+5 Q(x)=2x23x+5
需要对各项系数取模2,即
P ( x ) = x 3 + x 2 + 4 x − 3 ≡ x 3 + x 2 + 1 P(x)=x^3+x^2+4x-3 \equiv x^3+x^2+1 P(x)=x3+x2+4x3x3+x2+1
Q ( x ) = 2 x 2 − 3 x + 5 ≡ x + 1 Q(x)=2x^2-3x+5 \equiv x+1 Q(x)=2x23x+5x+1
进行加法运算时,对运算的结果也要取模2,即
( x 3 + x 2 + 1 ) + ( x + 1 ) ≡ x 3 + x 2 + x (x^3+x^2+1) + (x+1) \equiv x^3+x^2+x (x3+x2+1)+(x+1)x3+x2+x
乘法运算,也是相同的规则,需对运算结果的各项系数取模2即可

不可约多项式

如果一个多项式在指定的域上不能分解,则称为不可约多项式。
在有限域 G F ( 2 3 ) GF(2^3) GF(23)中,指多项式系数要小于2,即为0和1。多项式的阶不能高于3次。
G F ( 2 2 ) GF(2^2) GF(22)的元素(多项式)为 0 , 1 , x , x + 1 0,1,x,x+1 0,1,x,x+1
G F ( 2 3 ) GF(2^3) GF(23)的元素(多项式)为 0 , 1 , x , x + 1 , x 2 , x 2 + 1 , x 2 + x , x 2 + x + 1 0,1,x,x+1,x^2,x^2+1,x^2+x,x^2+x+1 0,1,x,x+1,x2,x2+1,x2+x,x2+x+1
G F ( 2 4 ) GF(2^4) GF(24)的元素(多项式)为 0 , 1 , x , x + 1 , x 2 , x 2 + 1 , x 2 + x , x 2 + x + 1 , x 3 , x 3 + 1 , x 3 + x , x 3 + x + 1 , x 3 + x 2 , x 3 + x 2 + 1 , x 3 + x 2 + x , x 3 + x 2 + x + 1 0,1,x,x+1,x^2,x^2+1,x^2+x,x^2+x+1,x^3,x^3+1,x^3+x,x^3+x+1,x^3+x^2,x^3+x^2+1,x^3+x^2+x,x^3+x^2+x+1 0,1,x,x+1,x2,x2+1,x2+x,x2+x+1,x3,x3+1,x3+x,x3+x+1,x3+x2,x3+x2+1,x3+x2+x,x3+x2+x+1
类似于模乘法群的概念,当模为素数时,所有比模小的元素都与模互素。那么对于多项式来说,需要找到一个类似素数性质(只能拆分为1和其本身)的多项式来作为多项式的模。
对于 G F ( 2 2 ) GF(2^2) GF(22) 可以作为模的候选多项式有 x 2 , x 2 + 1 , x 2 + x , x 2 + x + 1 x^2,x^2+1,x^2+x,x^2+x+1 x2,x2+1,x2+x,x2+x+1,即所有阶数为2的多项式。
x 2 = x ⋅ x x^2=x\cdot x x2=xx x 2 + x = x ( x + 1 ) x^2+x=x(x+1) x2+x=x(x+1) x 2 + 1 ≡ x 2 + 2 x + 1 = ( x + 1 ) ( x + 1 ) x^2+1\equiv x^2+2x+1=(x+1)(x+1) x2+1x2+2x+1=(x+1)(x+1)
这三个式子都可分解,因而不能作为不可约多项式。所以只有 x 2 + x + 1 x^2+x+1 x2+x+1为不可约多项式
对于 G F ( 2 3 ) GF(2^3) GF(23) 可以作为模的候选多项式有 x 3 , x 3 + 1 , ⋯   , x 3 + x 2 + x + 1 x^3,x^3+1,\cdots,x^3+x^2+x+1 x3,x3+1,,x3+x2+x+1,即所有阶数为3的多项式。首先排除所有不包含常数1的多项式,因为对于不包含常数1的多项式,都可以提出因子 x x x。则剩余的候选项有 x 3 + 1 , x 3 + x + 1 , x 3 + x 2 + 1 , x 3 + x 2 + x + 1 x^3+1,x^3+x+1,x^3+x^2+1,x^3+x^2+x+1 x3+1,x3+x+1,x3+x2+1,x3+x2+x+1
x 3 + 1 ≡ x 3 + 2 x 2 + 2 x + 1 = ( x + 1 ) ⋅ ( x 2 + x + 1 ) x^3+1\equiv x^3+2x^2+2x+1=\left(x+1\right)\cdot \left(x^2+x+1\right) x3+1x3+2x2+2x+1=(x+1)(x2+x+1)
x 3 + x 2 + x + 1 ≡ x 3 + 3 x 3 + 3 x + 1 = ( x + 1 ) 3 x^3+x^2+x+1\equiv x^3+3x^3+3x+1=(x+1)^3 x3+x2+x+1x3+3x3+3x+1=(x+1)3
这两个式子可以分解,所以不可约多项式有 x 3 + x + 1 , x 3 + x 2 + 1 x^3+x+1,x^3+x^2+1 x3+x+1,x3+x2+1

n不可约多项式
1 x x x, x + 1 x+1 x+1
2 x 2 + x + 1 x^2+x+1 x2+x+1
3 x 3 + x + 1 x^3+x+1 x3+x+1, x 3 + x 2 + 1 x^3+x^2+1 x3+x2+1
4 x 4 + x + 1 x^4+x+1 x4+x+1, x 4 + x 3 + 1 x^4+x^3+1 x4+x3+1, x 4 + x 3 + x 2 + x + 1 x^4+x^3+x^2+x+1 x4+x3+x2+x+1
5 x 5 + x 2 + 1 x^5+x^2+1 x5+x2+1, x 5 + x 3 + 1 x^5+x^3+1 x5+x3+1, x 5 + x 3 + x 2 + x + 1 x^5+x^3+x^2+x+1 x5+x3+x2+x+1, x 5 + x 4 + x 3 + x + 1 x^5+x^4+x^3+x+1 x5+x4+x3+x+1, x 5 + x 4 + x 3 + x 2 + 1 x^5+x^4+x^3+x^2+1 x5+x4+x3+x2+1, x 5 + x 4 + x 2 + x + 1 x^5+x^4+x^2+x+1 x5+x4+x2+x+1

不可约多项式个数

μ ( n ) = { 1   n = 1 ( − 1 ) k  n可以被分解为k个不同素数的乘积 0  存在素数的平方为  n  的因子  \mu(n)=\left\{\begin{array}{ll} 1 & \text { } n=1 \\ (-1)^{k} & \text { n可以被分解为k个不同素数的乘积} \\ 0 & \text { 存在素数的平方为 } n \text { 的因子 } \end{array}\right. μ(n)= 1(1)k0 n=1 n可以被分解为k个不同素数的乘积 存在素数的平方为 n 的因子 
多项式个数为 L q ( n ) = 1 n ∑ d ∣ n μ ( n d ) q d L_{q}(n)=\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) q^{d} Lq(n)=n1dnμ(dn)qd, d ∣ n d \mid n dn表示d是n的因子
G F ( 2 n ) GF(2^n) GF(2n)

n不可约多项式个数
1 1 1 ( μ ( 1 1 ) 2 1 ) = 2 \frac{1}{1}(\mu(\frac{1}{1})2^{1})=2 11(μ(11)21)=2
2 1 2 ( μ ( 2 2 ) 2 2 + μ ( 2 1 ) 2 1 ) = 1 \frac{1}{2}(\mu(\frac{2}{2})2^{2}+\mu(\frac{2}{1})2^1)=1 21(μ(22)22+μ(12)21)=1
3 1 3 ( μ ( 3 3 ) 2 3 + μ ( 3 1 ) 2 1 ) = 2 \frac{1}{3}(\mu(\frac{3}{3})2^{3}+\mu(\frac{3}{1})2^1)=2 31(μ(33)23+μ(13)21)=2
4 1 4 ( μ ( 4 4 ) 2 4 + μ ( 4 2 ) 2 2 + μ ( 4 1 ) 2 1 ) = 3 \frac{1}{4}(\mu(\frac{4}{4})2^{4}+\mu(\frac{4}{2})2^2+\mu(\frac{4}{1})2^1)=3 41(μ(44)24+μ(24)22+μ(14)21)=3
5 1 5 ( μ ( 5 5 ) 2 5 + μ ( 5 1 ) 2 1 ) = 6 \frac{1}{5}(\mu(\frac{5}{5})2^{5}+\mu(\frac{5}{1})2^1)=6 51(μ(55)25+μ(15)21)=6

可以看到和上一个表的是相符合的。

关于判断多项式是否为不可约多项式(或是计算更高阶的不可约的多项式),一种简单粗暴的方法是利用穷举的方式,如对于 G F ( 2 n ) GF(2^n) GF(2n)的候选多项式是否为不可约多项式,需要判断候选多项式和所有(除1以外)阶数不大于 ⌊ n / 2 ⌋ \left \lfloor n/2 \right \rfloor n/2的多项式进行除法都存在余项。这和判断一个数是否是素数有点类似,一个数 x x x若无法被所有 2 ∼ x 2 \sim \sqrt{x} 2x 的数整除,则是一个素数。当然数学上还有许多更加快捷的方法,这里就触及到我的知识盲区了,需要另找资料解决。

本原多项式

本原多项式个数计算

要计算 G F ( p n ) GF(p^n) GF(pn)本原多项式个数,个数 a q ( n ) = ϕ ( p n − 1 ) n a_{q}(n)=\frac{\phi\left(p^{n}-1\right)}{n} aq(n)=nϕ(pn1) ϕ \phi ϕ为欧拉函数。

本原多项式求解

对于 G F ( 2 n ) GF(2^n) GF(2n)的本原多项式,只需分解 x 2 n − x x^{2^n}-x x2nx的多项式即可,求得本原多项式。
对于1到5的本原多项式如下,下面进行验证。

n本原多项式
1 x + 1 x+1 x+1
2 x 2 + x + 1 x^2+x+1 x2+x+1
3 x 3 + x + 1 x^3+x+1 x3+x+1, x 3 + x 2 + 1 x^3+x^2+1 x3+x2+1
4 x 4 + x + 1 x^4+x+1 x4+x+1, x 4 + x 3 + 1 x^4+x^3+1 x4+x3+1
5 x 5 + x 2 + 1 x^5+x^2+1 x5+x2+1, x 5 + x 3 + 1 x^5+x^3+1 x5+x3+1, x 5 + x 3 + x 2 + x + 1 x^5+x^3+x^2+x+1 x5+x3+x2+x+1, x 5 + x 4 + x 3 + x + 1 x^5+x^4+x^3+x+1 x5+x4+x3+x+1, x 5 + x 4 + x 3 + x 2 + 1 x^5+x^4+x^3+x^2+1 x5+x4+x3+x2+1, x 5 + x 4 + x 2 + x + 1 x^5+x^4+x^2+x+1 x5+x4+x2+x+1
n x 2 n − x x^{2^n}-x x2nx分解本原多项式
1 x 2 1 − x = x 2 − x ≡ x ( x + 1 ) x^{2^1}-x = x^2-x\equiv x(x+1) x21x=x2xx(x+1) x + 1 x+1 x+1
2 x 4 − x ≡ x ( x + 1 ) ( x 2 + x + 1 ) x^4-x\equiv x(x+1)(x^2+x+1) x4xx(x+1)(x2+x+1) x 2 + x + 1 x^2+x+1 x2+x+1
3 x 8 − x ≡ x ( x + 1 ) ( x 3 + x 2 + 1 ) ( x 3 + x + 1 ) x^8-x\equiv x(x+1)(x^3+x^2+1)(x^3+x+1) x8xx(x+1)(x3+x2+1)(x3+x+1) x 3 + x + 1 x^3+x+1 x3+x+1, x 3 + x 2 + 1 x^3+x^2+1 x3+x2+1
4 x 16 − x ≡ x ( x + 1 ) ( x 2 + x + 1 ) ( x 4 + x + 1 ) ( x 4 + x 3 + 1 ) ( x 4 + x 3 + x 2 + x + 1 ) x^{16}-x\equiv x(x+1)(x^2+x+1)(x^4+x+1)(x^4+x^3+1)(x^4+x^3+x^2+x+1) x16xx(x+1)(x2+x+1)(x4+x+1)(x4+x3+1)(x4+x3+x2+x+1) x 4 + x + 1 x^4+x+1 x4+x+1, x 4 + x 3 + 1 x^4+x^3+1 x4+x3+1

对于n=4,未将 ( x 4 + x 3 + x 2 + x + 1 ) (x^4+x^3+x^2+x+1) (x4+x3+x2+x+1)作为本原多项式的原因未知。在一些本原多项式表中直接选取的多项式各项的次数之和最小那个多项式作为本原多项式。

对于多项式拆分,可以使用这个网站
更多不可约多项式和本原多项式见

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值