无监督降维 效果评价 trustworthiness measure

与有监督降维相比较,无监督降维的评价指标更加多样,有些指标被用于无监督降维的代价函数, 从而创造出新的降维方法。trustworthiness measure 作为根据秩的指标,可以用于评价大多数无监督降维方法的效果。

参考文献和介绍如下:

python 代码:

 

调用 trust_measure 函数即可计算。

觉得有用的话点个赞,不要白嫖    :)

### 如何量化评估 t-SNE 算法效果 t-SNE(t-Distributed Stochastic Neighbor Embedding)是一种用于和可视化的非线性技术,特别适合于高数据集的可视化。然而,由于其随机性和主观性强的特点,在量化评估方面存在一定的挑战。 #### 使用保持邻域结构的一致性作为评价标准 一种方法是衡量原始空间中的局部结构在低嵌入中被保留的程度。可以采用KL散度来测量两个分布间的差异程度,这也是t-SNE优化目标的一部分[^1]。较低的KL散度意味着更好的邻居关系保持。 ```python from sklearn.manifold import TSNE import numpy as np def calculate_kl_divergence(X_high_dim, X_low_dim): tsne = TSNE(n_components=2, perplexity=30.0, early_exaggeration=12.0, learning_rate=200.0, n_iter=1000, random_state=None, angle=0.5, init='pca', verbose=0) kl_divergence_ = tsne.kl_divergence_ return kl_divergence_ X_high_dim = ... # 高输入数据 X_low_dim = ... # 经过t-SNE转换后的低表示 kl_divergence_value = calculate_kl_divergence(X_high_dim, X_low_dim) print(f"KL Divergence Value: {kl_divergence_value}") ``` #### 可视化质量评估 虽然不是严格的定量指标,但是通过对比不同参数设置下得到的结果图也可以帮助理解哪种配置更有利于揭示潜在模式。此外还可以考虑使用其他补充性的视觉工具如应力(Stress)或信任度(Trustworthiness)[^2]来进行辅助分析。 #### 应用领域特定的性能度量 如果目的是为了更好地服务于某个具体应用场景,则可以根据该场景的需求定义相应的评估准则。例如分类任务可借助准确率、精确率等;而聚类则可能关注轮廓系数(Silhouette Score)等指标[^3]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值