强化学习之Actor-Critic

Actor Critic

1.概念

Actor是一个神经网络
Critic也是一个神经网络,他们是不同的神经网络,Actor用于预测行为的概率,Critic是预测在这个状态下的价值。
结合了Policy Gradient(Actor)和Function Approximation(Critic)的方法,Actor基于概率选行为,Critic(可以用Q-learning或者Value-based)估计每一个状态的价值,用这个状态的价值减去下个状态的价值,(TD-error),Critic就告诉actor下一个动作要被加大更新的,TD-error如果是正的,下个动作就要加大更新,如果是负的,就减小actor的更新幅度,Criric基于Actor的行为评判行为的得分,Actor根据Critic的评分修改选行为的概率。
总结:
(1)演员(Actor)是指策略函数π θ(a∣s),即学习一个策略来得到尽量高的回报。
(2)评论家(Critic)是指值函数 V π(s),对当前策略的值函数进行估计,即评估演员的好坏。
(3)借助于值函数,演员-评论家算法可以进行单步更新参数,不需要等到回合结束才进行更新。

2.优缺点

1.优点:Actor-Critic是由Policy Gradients和Value-Based组成的,critic通过学习环境和奖惩的关系能看到所处的状态潜在的奖励,所以来指点actor使actor每一步都在更新,如果使用Policy Gradients,actor只能等到一个回合才能更新。
因此:可以进行单步更新,比传统的Policy Gradient要快。
2.缺点:
(1)Actor— Critic涉及到两个神经网络,每次都在连续状态中更新参数,每次参数更新的前后都存在相关性,导致了神经网络只能片面的看待问题,甚至学不到东西,
(2)Actor的行为取决于Critic的Value,但是因为Critic本来就很难收敛,和Actor一起更新的话就更难收敛了(为了解决收敛问题,后又提出了DDPG)

3.原理

1.Actor
在这里插入图片描述
Actor用于预测行为的概率。输入是现在的状态state,选择生成出各种行为的价值,(左60%,右40%),根据概率来选择行为(选择60%的),输出概率,然后优化行为(TD-error),
2.Critic
在这里插入图片描述
输入状态state,输出状态的值。

4.公式原理

在这里插入图片描述

伪代码如下:
在这里插入图片描述

5.代码实现

代码主要分为两部分,第一部分是Actor,第二部分是Critic。对于Actor部分,大家可以和上一篇策略梯度的代码对比,改动并不大,主要区别在于梯度更新部分,策略梯度使用是蒙特卡罗法计算出的价值v(t)v(t),则我们的actor使用的是TD误差。

在策略梯度部分,对应的位置如下:

self.loss = tf.reduce_mean(self.neg_log_prob * self.tf_vt)  # reward guided loss

而我们的Actor对应的位置的代码是:

self.exp = tf.reduce_mean(self.neg_log_prob * self.td_error)

此处要注意的是,由于使用的是TD误差,而不是价值v(t)v(t),此处需要最大化self.exp,而不是最小化它,这点和策略梯度不同。对应的Actor代码为:

#这里需要最大化当前策略的价值,因此需要最大化self.exp,即最小化-self.exp
        self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(-self.exp)

对于Critic部分,我们使用了类似于DQN的三层神经网络。不过我们简化了这个网络的输出,只有一维输出值,而不是之前DQN使用的有多少个可选动作,就有多少维输出值。网络结构如下:

def create_Q_network(self):
        # network weights
        W1q = self.weight_variable([self.state_dim, 20])
        b1q = self.bias_variable([20])
        W2q = self.weight_variable([20, 1])
        b2q = self.bias_variable([1])
        self.state_input = tf.placeholder(tf.float32, [1, self.state_dim], "state")
        # hidden layers
        h_layerq = tf.nn.relu(tf.matmul(self.state_input, W1q) + b1q)
        # Q Value layer
        self.Q_value = tf.matmul(h_layerq, W2q) + b2q

对于算法中Actor和Critic交互的逻辑,在main函数中:

for step in range(STEP):
      action = actor.choose_action(state) # e-greedy action for train
      next_state,reward,done,_ = env.step(action)
      td_error = critic.train_Q_network(state, reward, next_state)  # gradient = grad[r + gamma * V(s_) - V(s)]
      actor.learn(state, action, td_error)  # true_gradient = grad[logPi(s,a) * td_error]
      state = next_state
      if done:
          break

附完整代码

来自莫烦PYTHON

import numpy as np
import tensorflow as tf
import gym

np.random.seed(2)
tf.set_random_seed(2)  # reproducible

# 超参数
OUTPUT_GRAPH = True
MAX_EPISODE = 3000
DISPLAY_REWARD_THRESHOLD = 200  # 刷新阈值
MAX_EP_STEPS = 1000  # 最大迭代次数
RENDER = False  # 渲染开关
GAMMA = 0.9  # 衰变值
LR_A = 0.001  # Actor学习率
LR_C = 0.01  # Critic学习率

env = gym.make('CartPole-v0')
env.seed(1)
env = env.unwrapped     # 为环境增加限制,对训练有利

N_F = env.observation_space.shape[0]  # 状态空间
N_A = env.action_space.n              # 动作空间


class Actor(object):
    def __init__(self, sess, n_features, n_actions, lr=0.001):
        self.sess = sess

        self.s = tf.placeholder(tf.float32, [1, n_features], "state")
        self.a = tf.placeholder(tf.int32, None, "act")
        self.td_error = tf.placeholder(tf.float32, None, "td_error")  # TD_error应该加大幅度或者减小幅度

        with tf.variable_scope('Actor'):       # 指定变量的作用域
            l1 = tf.layers.dense(              # 全连接层
                inputs=self.s,
                units=20,  # number of hidden units
                activation=tf.nn.relu,
                kernel_initializer=tf.random_normal_initializer(0., .1),  # 初始化weights,均值为0,方差为1
                bias_initializer=tf.constant_initializer(0.1),  # biases
                name='l1'
            )

            self.acts_prob = tf.layers.dense(
                inputs=l1,
                units=n_actions,  # output units
                activation=tf.nn.softmax,  # get action probabilities,输出概率
                kernel_initializer=tf.random_normal_initializer(0., .1),  # weights
                bias_initializer=tf.constant_initializer(0.1),  # biases
                name='acts_prob'
            )

        with tf.variable_scope('exp_v'):           # 预计的价值函数
            log_prob = tf.log(self.acts_prob[0, self.a])          # 计算loss,将动作的可能性放大或是缩小,log动作概率
            self.exp_v = tf.reduce_mean(log_prob * self.td_error)  # advantage (TD_error) guided loss,,exp表示预计的价值,log概率*TD方向

        with tf.variable_scope('train'):
            # 不断增加exp_v(动作带来的额外价值)
            self.train_op = tf.train.AdamOptimizer(lr).minimize(-self.exp_v)  # minimize(-exp_v) = maximize(exp_v)最大化预计价值

    def learn(self, s, a, td):
        s = s[np.newaxis, :]          # 新增维度
        feed_dict = {self.s: s, self.a: a, self.td_error: td}              # TF的一种输入方式
        _, exp_v = self.sess.run([self.train_op, self.exp_v], feed_dict)
        return exp_v

    def choose_action(self, s):
        s = s[np.newaxis, :]
        probs = self.sess.run(self.acts_prob, {self.s: s})        # 获取所有操作的概率
        return np.random.choice(np.arange(probs.shape[1]), p=probs.ravel())  # return a int,返回按照一定概率选择的动作


class Critic(object):
    def __init__(self, sess, n_features, lr=0.01):
        self.sess = sess

        self.s = tf.placeholder(tf.float32, [1, n_features], "state")
        self.v_ = tf.placeholder(tf.float32, [1, 1], "v_next")
        self.r = tf.placeholder(tf.float32, None, 'r')

        with tf.variable_scope('Critic'):
            l1 = tf.layers.dense(
                inputs=self.s,
                units=20,  # number of hidden units
                activation=tf.nn.relu,  # None
                # have to be linear to make sure the convergence of actor.
                # But linear approximator seems hardly learns the correct Q.
                kernel_initializer=tf.random_normal_initializer(0., .1),  # weights
                bias_initializer=tf.constant_initializer(0.1),  # biases
                name='l1'
            )

            self.v = tf.layers.dense(
                inputs=l1,
                units=1,  # output units
                activation=None,
                kernel_initializer=tf.random_normal_initializer(0., .1),  # weights
                bias_initializer=tf.constant_initializer(0.1),  # biases
                name='V'
            )
        # 就想Q-learning那样更新TD-error就可以
        with tf.variable_scope('squared_TD_error'):
            self.td_error = self.r + GAMMA * self.v_ - self.v             # critic得出的评分
            self.loss = tf.square(self.td_error)  # TD_error = (r+gamma*V_next) - V_eval,TD-error=V现实-V估计
        with tf.variable_scope('train'):
            self.train_op = tf.train.AdamOptimizer(lr).minimize(self.loss)       # 最小化损失函数

    def learn(self, s, r, s_):
        s, s_ = s[np.newaxis, :], s_[np.newaxis, :]

        v_ = self.sess.run(self.v, {self.s: s_})
        td_error, _ = self.sess.run([self.td_error, self.train_op],
                                    {self.s: s, self.v_: v_, self.r: r})
        return td_error


sess = tf.Session()

# 定义Actor,Critic
actor = Actor(sess, n_features=N_F, n_actions=N_A, lr=LR_A)  # 初始化Actor
critic = Critic(sess, n_features=N_F, lr=LR_C)  # 初始化Critic,critic学习的数据会为actor作指导,所以LR_C会大一些
sess.run(tf.global_variables_initializer())  # 初始化参数

if OUTPUT_GRAPH:
    tf.summary.FileWriter("logs/", sess.graph)  # 输出日志

# 开始迭代过程 对应伪代码部分
for i_episode in range(MAX_EPISODE):
    s = env.reset()  # 环境初始化
    t = 0
    track_r = []  # 每回合的所有奖励,置空
    while True:           # 回合中每一步
        if RENDER: env.render()
        a = actor.choose_action(s)  # Actor选取动作
        s_, r, done, info = env.step(a)  # 环境反馈
        if done: r = -20  # 回合结束的惩罚
        track_r.append(r)  # 记录回报值r
        td_error = critic.learn(s, r, s_)  # Critic 学习,返回TD-error
        actor.learn(s, a, td_error)  # Actor 学习
        s = s_
        t += 1

        if done or t >= MAX_EP_STEPS:
            # 回合结束, 打印回合累积奖励
            ep_rs_sum = sum(track_r)
            if 'running_reward' not in globals():
                running_reward = ep_rs_sum
            else:
                running_reward = running_reward * 0.95 + ep_rs_sum * 0.05
            if running_reward > DISPLAY_REWARD_THRESHOLD: RENDER = True  # rendering
            print("episode:", i_episode, "  reward:", int(running_reward))
            break

参考链接;
1.actor-critic
https://github.com/datawhalechina/leedeeprl-notes
https://blog.csdn.net/qq_30615903/article/details/80774384?ops_request_misc=%25257B%252522request%25255Fid%252522%25253A%252522161033115816780265418113%252522%25252C%252522scm%252522%25253A%25252220140713.130102334…%252522%25257D&request_id=161033115816780265418113&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allbaidu_landing_v2~default-1-80774384.pc_search_result_no_baidu_js&utm_term=actor%20critic%E6%9B%B4%E6%96%B0%E5%85%AC%E5%BC%8F

https://blog.csdn.net/rufanchen_/article/details/95093958?ops_request_misc=%25257B%252522request%25255Fid%252522%25253A%252522161032889916780262561436%252522%25252C%252522scm%252522%25253A%25252220140713.130102334…%252522%25257D&request_id=161032889916780262561436&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2alltop_click~default-1-95093958.pc_search_result_no_baidu_js&utm_term=actor-critic

  • 7
    点赞
  • 88
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: ppo(proximal policy optimization)是一种用于强化学习的策略优化算法,其基本思想是在策略更新函数的优化过程中,使用了一些新的技巧来提高学习效率和稳定性。 actor-critic是一种深度强化学习算法,其中actorcritic分别负责学习决策策略和估计价值函数。actor-critic算法通过训练actorcritic模型来实现策略优化。 pp actor-critic算法结合了ppo和actor-critic的两种算法,是一种新的策略优化算法。它通过使用ppo算法对策略进行优化,并使用actor-critic算法来学习和估计策略价值。在这种模型中,actor负责生成动作,critic负责评估策略价值,pp算法保证了策略更新的稳定性和效率。 pp actor-critic算法具有许多优点,例如可以有效地解决强化学习中出现的稀疏奖励和高维空间问题,能够在没有先验知识的情况下自动学习和适应。不过,它的训练过程比较复杂,需要选择合适的超参数,并且需要较长的训练时间来获得最佳效果。 尽管存在一些挑战,但pp actor-critic算法仍被广泛应用于各种强化学习任务,例如游戏、机器人控制等。它的发展也为解决实际应用中的问题提供了新的思路和方法。 ### 回答2: PPO Actor-Critic是深度强化学习领域中的一个算法。它是基于Actor-Critic方法的一种改进。Actor-Critic算法将决策策略和价值函数相结合,以达到更准确的评估和更新。而PPO算法则是为了解决常规Policy Gradient算法的训练不稳定性而提出的一种策略优化算法。 PPO Actor-Critic算法的核心思想是通过对策略的更新,不断改善训练的效果。该算法是由Proximal Policy Optimization(PPO)算法和Actor-Critic算法结合而成。在训练过程中,PPO Actor-Critic会利用现有的经验,通过Actor-Critic算法更新策略和价值函数。其更新策略的过程中,会采用PPO算法进行优化,从而能够根据实际情况平衡策略更新和训练效果。 PPO Actor-Critic算法的优点是能够同时利用线性和非线性的函数逼近器来最小化优势函数的误差。从而避免了传统策略梯度算法的过拟合问题,大大增强了该算法的鲁棒性。此外,PPO Actor-Critic也能够避免过多的数据采样和重复推断,大大提升了算法的效率。 综上所述,PPO Actor-Critic是一种结合了PPO算法和Actor-Critic算法的强化学习算法,可用于训练智能代理以达到更精确的评估和更新。 ### 回答3: PPO Actor-Critic 是指一种深度强化学习算法。在这种算法中,通过两个模型一起工作来提高决策过程的效率。 其中,Actor 模型用于执行动作。它使用一系列状态来计算每个可能的策略,并选择相应的行动方案。这个过程被看作是一个正则化的过程。这意味着在执行过程中,Actor 模型不断从环境中获取反馈信息,并根据这些反馈信息进行优化。 相反,Critic 模型则用于评估 Actor 模型的表现。它通过测量实际的奖励和预测的奖励之间的差距来判断 Actor 模型是否做决策。如果结果不好,则系统会通过重新计算 Actor 模型的策略来提出新的决策方案。 PPO Actor-Critic 算法通过优化 Actor 模型的过程来提高决策的效率。这通常会导致更好的策略和更好的结果。此外,由于 Critic 模型的存在,系统可以更好地理解和评估策略的表现。这使得 PPO Actor-Critic 算法成为适用于机器人控制、游戏策略和金融交易等领域的一种流行算法。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值