南邮离散实验三(JAVA)

内容:编写程序实现整除关系这一偏序关系上所有盖住关系的求取,并判定对应偏序集是否为格。
要求:对任意给定正整数,利用整除关系求所有由其因子构成的集合所构成的格,判断其是否为有补格。

import java.util.Scanner;

public class Pianxu {

    private static int n; //正整数n
    private static int count = 0; //计数
    private static int[] factors = new int[100]; //存放因子
    private static int[][] matrixs = new int[100][100];


    public static int gcd(int x, int y) {
        int m = 1;
        while (m != 0) {
            m = x % y;
            x = y;
            y = m;
        }
        return x;
    }

    public static void factor(int n) {
        for (int i = 1; i <= n/2; i++) {
            if (n % i == 0) {
                factors[count] = i;
                count++;
                System.out.print(i + ",");
            }
        }
//        count++;
        factors[count] = n;
        System.out.println(n);
    }

    public static void cover() {
        for (int i = 0; i <= count; i++) {
            for (int j = 0; j <= count; j++) {
                //满足整除关系设为1
                matrixs[i][j] = ((factors[j] % factors[i] == 0) ? 1 : 0);
            }
        }

        for (int i = 0; i <= count; i++) {
            for (int j = 0; j <= count; j++) {
                for (int k = 0; k <= count; k++) {
                    matrixs[k][k] = 0; //去掉自反性
                    if (matrixs[i][j] == 1 && matrixs[j][k] == 1) {
                        matrixs[i][k] = 0;
                    }
                }
            }
        }

        System.out.print("盖住关系{");
        for (int i = 0; i <= count; i++) {
            for (int k = 0; k <= count; k++) {
                if (matrixs[i][k] == 1) {
                    System.out.print("<" + factors[i] + "," + factors[k] + ">");
                }
            }
        }
        System.out.println("}");
    }

    //判断补格
    public static void lattice() {
        int gcd;
        int lcm;
        boolean flag;
        for (int i = 1; i < count; i++) {
            flag = false;
            for (int j = 1; j < count; j++) {
                if (i == j) {
                    continue;
                }
                gcd = gcd(factors[i], factors[j]); //最大公约数,即最大下界
                lcm = factors[i] / gcd * factors[j]; //最小公倍数,即最小上界
                if (gcd == factors[0] && lcm == factors[count]) {
                     //最大下界为1,最小上界为n
                    flag = true;
                    break;
                }
            }
            if (!flag) {
                System.out.println("不是有补格");
                return;
            }
            System.out.println("是有补格");
            return;
        }
    }

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        System.out.println("请输入一个正整数");
        n = sc.nextInt();
        System.out.println();
        factor(n);
        cover();
        lattice();
    }


}

测试结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值