tf.pad()

tf.pad:填充函数 

 tf.pad( tensor,paddings, mode='CONSTANT',name=None)

tensor是要填充的张量
padings ,代表每一维填充多少行/列,它的维度一定要和tensor的维度是一样的,这里的维度不是传统上数学维度,如[[2,3,4],[4,5,6]]是一个3乘4的矩阵,但它依然是二维的,所以pad只能是[[1,2],[1,2]]这种。

mode 可以取三个值,分别是"CONSTANT" ,“REFLECT”,“SYMMETRIC”

mode=“CONSTANT” 填充0

mode="REFLECT"映射填充,上下(1维)填充顺序和paddings是相反的,左右(零维)顺序补齐

mode="SYMMETRIC"对称填充,上下(1维)填充顺序是和paddings相同的,左右(零维)对称补齐

ok直接上代码举例:

1.

t=[[2,3,4],[5,6,7]]
print(tf.pad(t,[[1,1],[2,2]],"CONSTANT")))

输出

 [[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 2, 3, 4, 0, 0],
 [0, 0, 5, 6, 7, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]]

注:[1,1]是在pad里是第一个,代表第一维即矩阵的行,左边的1代表上方放一行0,右边的1代表下方放一行0
同理,2,2顺序是第二个,代表对列操作,左边的2代表在左边放两列0,右边2代表在右边放两列0

2.

t=[[2,3,4],[5,6,7]]
    print(tf.pad(t,[[1,2],[2,3]],"CONSTANT")))

输出

  [[0, 0, 0, 0, 0, 0, 0, 0],
  [0, 0, 2, 3, 4, 0, 0, 0],
  [0, 0, 5, 6, 7, 0, 0, 0],
  [0, 0, 0, 0, 0, 0, 0, 0],
  [0, 0, 0, 0, 0, 0, 0, 0]]

1,2代表上方一行0,下方2行0;2,3代表列坐标放2列0,右边放3列0
3.

  t=[[2,3,4],[5,6,7]]
        print(tf.pad(t,[[1,1],[2,2]],"REFLECT")))

输出

[[7, 6, 5, 6, 7, 6, 5],
[4, 3, 2, 3, 4, 3, 2],
[7, 6, 5, 6, 7, 6, 5],
[4, 3, 2, 3, 4, 3, 2]]

行上方复制和行下方和对应位置复制相反,列左边和列右边以原第一列和原第三列维中轴复制

4.

t=[[2,3,4],[5,6,7]]
    print(tf.pad(t,[[1,1],[2,2]],"SYMMETRIC")))

输出:

  [[3, 2, 2, 3, 4, 4, 3],
   [3, 2, 2, 3, 4, 4, 3],
   [6, 5, 5, 6, 7, 7, 6],
   [6, 5, 5, 6, 7, 7, 6]]

行上下方直接复制对应的,列左右和对应的右左对称复制

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值