基于蒙特卡罗模拟的股票风险价值VaR测算
前言:如果各位观看博客的想学的,可以通过Tushare金融数据注册链接注册账号,在获得相关数据集,这是本人的分享链接注册后,我可以获得50积分,谢谢各位支持。
摘要:投资者在投资前应对目标公司的股票风险价值进行分析。为评价a和b两支股票的风险,首先对样本数据进行了详细的阐述,并进行了可视化展示,以揭示其基本规律和特征。然后,基于蒙特卡罗模拟算法建立了随机过程模型,以计算股票的平均收益率与风险。通过计算得到股票位于99%置信水平下的VAR,从而对其投资风险进行评价。通过对股票编号为000001.SZ、300231.SZ、002332.SZ、2012年01月04日-2018年12月28日时段的股票数据进行分析,证明了本模型的有效性。
关键词:金融数据;VaR估计;股票风险;蒙特卡洛算法
1.引言
2.模型介绍
VaR (风险价值)是一种定量化描述金融机构所面临的风险的方法。VaR值的测算主要取决于两个关键的变量 :即在市场正常波动的条件下,在一定的概率水平α%下,某一金融资产或金融资产组合的VaR是在未来特定一段时间内最大的可能损失。
使用蒙特卡罗模拟法进行风险价值估算,即运用历史数据对未来进行多次模拟,以求未来股价结果的概率分布。蒙特卡罗模拟法的公式如下:
其中S为股票的价格,μ为期望收益率,△t为时间间隔,σ为股票风险,ε为随机变量。
可以看出,蒙特卡罗模拟法认为股票的价格波动可以分为两部分,第一部分为drift,即股票会根据收益率波动,第二部分为shock,即随机波动。
3.实证分析
3.1数据选取
目前各大领域的金融机构及各大企业所持有的股票多样化,本文取国内各大领域的股票数据的日收益率作为风险因子,并定义日收益率为: 收益为:P=V-C
收益率为::
K
=
P
V
=
(
V
−
C
)
C
=
V
(
C
−
1
)
K={P \over V} = {(V-C) \over C}={V \over (C-1)}
K=VP=C(V−C)=(C−1)V
其中C为投入的本金,V为经过一段时间后的市值。
3.2基本描述收益率
在正式建模分析之前,首先对国内企业股票的收益率做描述分析,北京银信科技的股票数据的收益率的基本描述如表1所示、浙江仙琚制药的股票数据的收益率的基本描述如表2所示、深圳平安银行的股票数据的收益率的基本描述如表3所示:
x
1
,
x
2
,
x
3
⋯
x
n
{x_1,x_2,x_3 \cdots x_n}
x1,x2,x3⋯xn
为独立同分布F的n个样本点,设其概率密度函数为f,核密度估计为以下:
其中K为核密度函数,h为设定的窗宽。
对三支股票就行统一的分析,绘制出图5所示的股票的累计收益率,通过观察发现,虽然三支股票的结果都是收益率随着时间逐渐下降,但是可以在其中发现000001.SZ股票的下降趋势慢于其他的两支股票。
3.3.结果分析
定义完蒙特卡罗函数,我们通过对000001.SZ、002332.SZ和300231.SZ三支股票进行模拟100次的投资,得到的结果如图8所示,可以看到,每一次模拟所得到股价走势都是不同的,300231.SZ股票在下一年的价格大致在6.25-6.75之间,002332.SZ股票在下一年的价格大致在5.7-6.7 之间,000001.SZ股票在下一年的价格大致在9.2-9.6之间,000001.SZ与另两支股票相比还是处于优势。3.4.对比分析
对选取的另外几支股票进行对比分析,其股票风险率收益率关系对比结果如所示:4.附录
部分代码如下所示: 上传的代码没有格式化,想尽多了解。 代码整理中。代码
git后续上传
希望多多支持