蒙特卡洛模拟计算var例题_蒙特卡洛积分

本文介绍了蒙特卡洛积分的基本概念,并通过实例展示了在不同区间变化下的MC积分及其置信区间计算。接着,探讨了降低方差的四种方法:反对称变量、控制变数、重要性抽样和分层抽样,通过具体例子说明这些方法如何有效减少方差。最后,强调在实际应用中,重要性和分层抽样是常用且高效的策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

97683034494d11690ec2599436f91096.png
本文介绍蒙特卡洛方法计算积分以及减小方差的几种处理方式.

一、Monte Carlo积分

MC方法:将积分转换为易模拟的随机变量的期望,再由大数定律对期望进行估计。

1.先看简单情况

分析:

R代码:

# 生成U(0,1)分布的随机数
m <- 10000
x <- runif(m)

# 计算估计值
thetaHat <- mean(exp(-x))
print(thetaHat)
##  0.6328353

# 真实值
print(1-exp(-1))
## 0.6321206

可见估计值和真实值的偏差非常小。

2.区间变化情况

分析:

R代码:

# Phi(x)中的x
x <- 2

m <- 10000
z <- rnorm(m)


thetaHat <- mean(z <= x)

# 打印估计值
print(thetaHat)
## 0.9774

# 打印真实值
print(pnorm(x))
##0.9772499

3.MC积分置信区间

如果要求

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值