机器学习中的Bagging思想

Bagging(Bootstrap Aggregating)是机器学习中一种集成学习方法,旨在提高模型的准确性和稳定性。Bagging的思想源自于Bootstrap采样技术,其基本原理如下:

  1. Bootstrap采样: Bagging的核心思想是通过对原始数据进行有放回的随机采样,生成多个与原始数据规模相同的"虚拟数据集"这个过程允许在新的数据集中多次出现相同的样本,同时也可能导致某些样本在新的数据集中缺失。这种采样方法称为Bootstrap采样

  2. 模型训练: 对于每个Bootstrap采样得到的数据集,使用相同的学习算法建立一个基本模型(通常是决策树)。由于每个模型都是在略有差异的数据集上训练的,因此它们之间会有一些差异

  3. 集成预测: Bagging的关键是将所有基本模型的预测结果进行组合。对于回归问题,通常采用简单的平均方法,而对于分类问题,采用投票(voting)的方式,即每个模型投一票,最终预测结果由获得最多投票的类别确定。

Bagging的主要优点在于通过降低模型的方差,提高了整体模型的泛化能力。通过引入随机性和多样性,Bagging降低了模型对特定训练数据的敏感性,从而提高了模型对未见数据的适应能力。著名的Bagging算法包括随机森林(Random Forest)。

总体而言,Bagging思想是通过构建多个略有差异的模型,并将它们的结果组合起来,以获得更稳健、更具泛化能力的模型。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
周志华老师是机器学习领域的知名专家,他提出的集成学习思想是指通过组合多个学习器来提高整体的学习性能。其,Bagging、Boosting和Stacking是集成学习最为常见的三种方法。 1. Bagging(bootstrap aggregating):这是一种基于自助采样(bootstrap sampling)的集成学习方法,即从原始数据集有放回地采样得到多个采样集,然后在每个采样集上训练一个基学习器,最后将这些基学习器的预测结果进行平均或投票等方式来得到最终结果。Bagging方法的优点是可以减小模型的方差,提高模型的泛化能力。 2. Boosting:这是一种基于加权多数表决(weighted majority voting)的集成学习方法,即在每次训练对错分类的样本进行加权,使得基学习器对错分类的影响不同,最终将多个基学习器的预测结果进行加权平均来得到最终结果。Boosting方法的优点是可以减小模型的偏差,提高模型的准确性。 3. Stacking:这是一种基于模型组合的集成学习方法,即将多个不同的基学习器的预测结果作为样本特征,再通过一个元学习器来进行最终的预测。Stacking方法的优点是可以将不同的基学习器的优点进行组合,提高模型的性能。 总之,Bagging、Boosting和Stacking是集成学习常用的三种方法,它们都可以通过组合多个基学习器来提高整体的学习性能,具有广泛的应用价值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

温柔的行子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值