bagging算法_Bagging、Boosting、Stacking及其算法(RF、XGBoost、LightGBM)

一、几种机器学习思想

Bagging的思想是利用抽样生成不同的训练集,进而训练不同的模型,将这些模型的输出结果综合(投票或平均的方式)得到最终的结果。Bagging本质上是利用了模型的多样性,改善算法整体的效果。Bagging的重点在于不同训练集的生成,这里使用了一种名为Bootstrap的方法,即有放回的重复随机抽样,从而生成不同的数据集。具体流程如下图所示:

9e07f4762078a04e8529849b567ed3e4.png
Bagging流程图

在sklearn实现如下:

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import BaggingClassifier

model1=DecisionTreeClassifier(max_depth=5)

model2=BaggingClassifier(model1,n_estimators=100,max_samples=0.3)

model2.fit(x_train,y_train)

print (model2.predict(x_test))

随机森林实际上就是Bagging算法的进化版,不同于Bagging算法的是,Bagging产生不同数据集的方式只是对行利用有放回的随机抽样,而随机森林产生不同数据集的方式不仅对行随机抽样也对列进行随机抽样。

在sklearn实现如下:

from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(max_depth=2, random_state=0)

clf.fit(x_train, y_train)

print(clf.feature_importances_)

print(clf.predict(x_test))

Random Forest(随机森林)是Bagging的扩展变体,它在以决策树 为基学习器构建Bagging集成的基础上,进一步在决策树的训练过程中引入了随机特征选择,因此可以概括RF包括四个部分:1、随机选择样本(放回抽样);2、随机选择特征;3、构建决策树;4、随机森林投票(平均)。

在构建决策树的时候,RF的每棵决策树都最大可能的进行生长而不进行剪枝;在对预测输出进行结合时,RF通常对分类问题使用简单投票法,回归任务使用简单平均法。

随机森林的优点:

1、在数据集上表现良好,相对于其他算法有较大的优(训练速度、预测准确度);

2、能够处理很高维的数据,并且不用特征选择,而且在训练完后,给出特征的重要性;

3、容易做成并行化方法。


随机森林的缺点:在噪声较大的分类或者回归问题上回过拟合。

https://blog.csdn.net/qq_28031525/article/details/70207918

不像bagging算法只能改善模型高方差(high variance)情况,Boosting算法对同时控制偏差(bias)和方差都有非常好的效果,而且更加高效。

Stacking背后的基本思想是使用大量基分类器,然后使用另一种分类器来融合它们的预测结果,旨在降低泛化误差。Stacking算法分为2层,第一层是用不同的算法形成T个基础分类器,同时产生一个与原数据集大小相同的新数据集,利用这个新数据集和一个新算法构成第二层的分类器。在训练第二层分类器时采用各基础分类器的输出作为输入,第二层分类器的作用就是对基础分类器的输出进行集成。但是由于Stacking模型复杂度过高,比较容易造成过拟合。流程图如下所示:

f1fc92660c44d3362567d914a4fd419a.png
Stacking流程图

Boosting是一种提升算法,其思想是在算法迭代过程中,每次迭代构建新的分类器,重点关注被之前分类器分类错误的样本,如此迭代,最终加权平均所有分类器的结果,从而提升分类精度。Boosting与Bagging相比来说最大的区别就是Boosting是串行的,而Bagging中所有的分类器是可以同时生成的(分类器之间无关系),而Boosting中则必须先生成第一个分类器,然后依次往后进行。核心思想是通过改变训练集进行有针对性的学习,通过每次更新迭代,增加错误样本的权重,减小正确样本的权重。知错就改,逐渐变好。典型应用为:Adaboost、GBDT和Xgboost。流程图如下所示:

99ceee9978e02a205f63e4a06c705c3d.png
Boosting流程图

【问】

xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度?
用xgboost/gbdt在在调参的时候把树的最大深度调成6就有很高的精度了。但是用DecisionTree/RandomForest的时候需要把树的深度调到15或更高。用RandomForest所需要的树的深度和DecisionTree一样我能理解,因为它是用bagging的方法把DecisionTree组合在一起,相当于做了多次DecisionTree一样。但是xgboost/gbdt仅仅用梯度上升法就能用6个节点的深度达到很高的预测精度,使我惊讶到怀疑它是黑科技了。请问下xgboost/gbdt是怎么做到的?它的节点和一般的DecisionTree不同吗?

【答】
Boosting主要关注降低偏差,因此Boosting能基于泛化性能相当弱的学习器构建出很强的集成;Bagging主要关注降低方差,因此它在不剪枝的决策树、神经网络等学习器上效用更为明显。
Bagging算法:每个分类器都随机从原样本中做有放回的采样,然后分别在这些采样后的样本上训练分类器,然后再把这些分类器组合起来。简单的多数投票一般就可以。其代表算法是随机森林。

Boosting通过迭代地训练一系列的分类器,每个分类器采用的样本分布都和上一轮的学习结果有关。其代表算法是AdaBoost, GBDT。
就机器学习算法来说,其泛化误差可以分解为两部分,偏差(bias)和方差(variance)。偏差指的是算法的期望预测与真实预测之间的偏差程度,反应了模型本身的拟合能力;方差度量了同等大小的训练集的变动导致学习性能的变化,刻画了数据扰动所导致的影响。
如下图所示,当模型越复杂时,拟合的程度就越高,模型的训练偏差就越小。但此时如果换一组数据可能模型的变化就会很大,即模型的方差很大。所以模型过于复杂的时候会导致过拟合。
当模型越简单时,即使我们再换一组数据,最后得出的学习器和之前的学习器的差别就不那么大,模型的方差很小。还是因为模型简单,所以偏差会很大。

e54bf775ed17db1947f7939a79cf11c0.png

也就是说,当我们训练一个模型时,偏差和方差都得照顾到,漏掉一个都不行。
对于Bagging算法来说,由于我们会并行地训练很多不同的分类器的目的就是降低这个方差(variance) ,因为采用了相互独立的基分类器多了以后,h的值自然就会靠近.所以对于每个基分类器来说,目标就是如何降低这个偏差(bias),所以我们会采用深度很深甚至不剪枝的决策树。
对于Boosting来说,每一步我们都会在上一轮的基础上更加拟合原数据,所以可以保证偏差(bias),所以对于每个基分类器来说,问题就在于如何选择variance更小的分类器,即更简单的分类器,所以我们选择了深度很浅的决策树。

二、调参(XGB、LightGBM)

1. max_features取总特征数的平方根或者30%--40%

2. min_samples_split(控制过拟合),可以取总样本数的0.5-1%之间

3. min_samples_leaf (控制过拟合)

4. max_depth (控制过拟合),一般取5--8

5. Subsample(降低方差),一般取0.8

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值