决策树、bagging、boosting算法思想

本文内容主要以算法思想为主,介绍决策树原理,从决策树迁移到集成学习主要是由于随机森林比较好使,引出了bagging和它的亲戚boosting。有趣的思想包括:决策树的信息熵、随机森林的泛化性能、boosting的改变样本分布与前向分步思想

1.决策树

人类判断的机制:由上及下逐级决策,将大问题化为多个子问题。

决策树机制:选择不同的划分属性,将问题逐步划分建成一棵树状图。

由根结点(原始问题)、内结点(子问题)、叶节点(最终决策)组成,具有处理未见实例的能力,泛化能力强。

1.1 算法步骤

决策树利用递归生成,生成过程包含三种递归返回:

1)当前结点所含样本属于同一类别

2)当前属性集为空或者当前样本在所有属性上相等

3)当前结点所含样本为空

具体的算法实现过程这篇文章讲的很好:决策树分类算法原理分析及代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值