【UOJ #50】【UR #3】—链式反应(生成函数+分治NTT/多项式Exp+常微分方程)

传送门


首先这个题面就很胃疼
而且感觉讲的不是很清楚

实际上是要求满足如下条件的树的个数:

对于每个非叶节点,有 c + 2 c+2 c+2个儿子,其中有 c ∈ A c\in A cA个叶子节点和2个非叶节点
且点的编号满足父亲小于儿子

按照套路设 f [ i ] f[i] f[i] i i i个点的答案可以列出 d p dp dp

f [ i ] = 1 2 ∑ j ∑ k [ i − j − k − 1 ∈ A ] ( i − 1 j ) ( i − j − 1 k ) f j f k f[i]=\frac 1 2\sum_{j}\sum_{k}[i-j-k-1\in A]{i-1\choose j}{i-j-1\choose k}f_jf_k f[i]=21jk[ijk1A](ji1)(kij1)fjfk
中间 1 2 \frac 1 2 21是由于两个非叶儿子会把每种情况算2次
边界 f [ 1 ] = 1 f[1]=1 f[1]=1

A ( x ) = ∑ i ∈ A x i i ! , f ( x ) = ∑ i f [ i ] x i i ! A(x)=\sum_{i\in A}\frac{x^i}{i!},f(x)=\sum_{i}f[i]\frac{x^i}{i!} A(x)=iAi!xi,f(x)=if[i]i!xi

那么有 ∑ i f [ i + 1 ] x i i + 1 = f ′ = 1 2 f 2 A + 1 \sum_{i}f[i+1]\frac{x^i}{i+1}=f'=\frac 1 2f^2A+1 if[i+1]i+1xi=f=21f2A+1

这个可以分治 N T T NTT NTT做到 O ( n l o g 2 n ) O(nlog^2n) O(nlog2n)而且跑的比 n l o g n nlogn nlogn

不过注意如果 l ≠ 1 l\not=1 l=1的话实际上情况只统计到了一次
而前面有一个 1 2 \frac 1 2 21,所以算的时候需要乘2

#include<bits/stdc++.h>
using namespace std;
#define cs const
#define pb push_back
#define re register
#define ll long long
#define pii pair<int,int>
#define fi first
#define bg begin
#define se second
#define poly vector<int>
cs int RLEN=1<<20|1;
inline char gc(){
	static char ibuf[RLEN],*ib,*ob;
	(ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
	return (ib==ob)?EOF:*ib++;
}
#define gc getchar
inline int read(){
	char ch=gc();
	int res=0;bool f=1;
	while(!isdigit(ch))f^=ch=='-',ch=gc();
	while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
	return f?res:-res;
}
template<class tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
template<class tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
cs int mod=998244353,G=3;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
inline void Dec(int &a,int b){a-=b,a+=a>>31&mod;}
inline int mul(int a,int b){static ll r;r=1ll*a*b;return r>=mod?r%mod:r;}
inline void Mul(int &a,int b){static ll r;r=1ll*a*b;a=r>=mod?r%mod:r;}
inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
inline int Inv(int x){return ksm(x,mod-2);}
cs int C=19;
int *w[C+1],rev[(1<<C)|5];
inline void init_w(){
	for(int i=1;i<=C;i++)w[i]=new int[1<<(i-1)];
	int wn=ksm(G,(mod-1)/(1<<C));
	w[C][0]=1;
	for(int i=1;i<(1<<(C-1));i++)w[C][i]=mul(w[C][i-1],wn);
	for(int i=C-1;i;i--)
	for(int j=0;j<(1<<(i-1));j++)w[i][j]=w[i+1][j<<1];
}
inline void init_rev(int lim){
	for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1));
}
inline void ntt(poly &f,int lim,int kd){
	for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]);
	for(int mid=1,l=1,a0,a1;mid<lim;mid<<=1,l++)
	for(int i=0;i<lim;i+=mid<<1)
	for(int j=0;j<mid;j++)
	a0=f[i+j],a1=mul(f[i+j+mid],w[l][j]),f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1);
	if(kd==-1){
		reverse(f.bg()+1,f.bg()+lim);
		for(int i=0,iv=Inv(lim);i<lim;i++)Mul(f[i],iv);
	}
}
inline poly operator *(poly a,poly b){
	int deg=a.size()+b.size()-1,lim=1;
	if(deg<=32){
		poly c(deg,0);
		for(int i=0;i<a.size();i++)
		for(int j=0;j<b.size();j++)
		Add(c[i+j],mul(a[i],b[j]));
		return c;
	}
	while(lim<deg)lim<<=1;
	init_rev(lim);
	a.resize(lim),b.resize(lim);
	ntt(a,lim,1),ntt(b,lim,1);
	for(int i=0;i<lim;i++)Mul(a[i],b[i]);
	ntt(a,lim,-1),a.resize(deg);
	return a;
}
cs int N=200005;
int inv[N<<1],fac[N<<1],ifac[N<<1];
inline void init_inv(){
	cs int len=(N-5)<<1;
	fac[0]=ifac[0]=inv[0]=inv[1]=1;
	for(int i=2;i<=len;i++)inv[i]=mul(mod-mod/i,inv[mod%i]);
	for(int i=1;i<=len;i++)fac[i]=mul(fac[i-1],i),ifac[i]=mul(ifac[i-1],inv[i]);
}
int a[N],g[N],f[N],n;
char s[N];
void cdq(int l,int r){
	if(l==r)return;
	int mid=(l+r)>>1,l1=r-l+1;
	cdq(l,mid);
	poly h,p;
	for(int i=l;i<=mid;i++)h.pb(f[i]);
	for(int i=1;i<=l1;i++)p.pb(f[i]);
	h=h*p;int coef=1+(l>1);
	for(int i=mid+1;i<=r;i++)Add(g[i],mul(coef,h[i-l-1]));
	h.clear(),p.clear();
	for(int i=l;i<=mid;i++)h.pb(g[i]);
	for(int i=1;i<=l1;i++)p.pb(a[i]);
	h=h*p; 
	for(int i=mid+1;i<=r;i++)Add(f[i],mul(inv[i*2],h[i-l-1]));
	cdq(mid+1,r);
}
int main(){
	#ifdef Stargazer
	freopen("lx.cpp","r",stdin);
	#endif
	init_w(),init_inv();
	n=read();
	scanf("%s",s+1);
	for(int i=1;i<=n;i++)a[i]=mul((s[i]=='1'),ifac[i-1]);
	f[1]=1,cdq(1,n);
	for(int i=1;i<=n;i++)cout<<mul(f[i],fac[i])<<'\n';
}

接下来是 O ( n l o g n ) O(nlogn) O(nlogn)的做法
而且是解常微分方程的一个通用套路

先设 h ( x ) = 1 2 A x 2 + 1 h(x)=\frac 1 2Ax^2+1 h(x)=21Ax2+1
那么实际要解的就是 f ′ ( x ) = h ( f ( x ) ) f'(x)=h(f(x)) f(x)=h(f(x))
按照牛顿迭代的通用方法
假设已经求出 f 0 ′ ( x ) ≡ h ( f 0 ( x ) ) % x ⌈ x 2 ⌉ f_0'(x)\equiv h(f_0(x))\%x^{\lceil \frac x 2\rceil} f0(x)h(f0(x))%x2x
f ′ ( x ) ≡ h ( f ( x ) ) % x n f'(x)\equiv h(f(x))\% x^n f(x)h(f(x))%xn
那么 f ′ ( x ) = h ( f 0 ) + h ′ ( f 0 ) ( f − f 0 ) f'(x)=h(f_0)+h'(f_0)(f-f_0) f(x)=h(f0)+h(f0)(ff0)
由于这个东西无法方便的牛顿迭代
考虑构造 v ( x ) = e x p ( − ∫ h ′ ( f 0 ( x ) ) d x ) v(x)=exp(-\int h'(f_0(x))\mathrm{dx}) v(x)=exp(h(f0(x))dx)
那么有 v ′ = − h ′ ( f 0 ) v v'=-h'(f_0)v v=h(f0)v
等式两边乘上 v v v
f ′ v = v ( h ( f 0 ) + h ′ ( f 0 ) ( f − f 0 ) ) f'v=v(h(f_0)+h'(f_0)(f-f_0)) fv=v(h(f0)+h(f0)(ff0))
f ′ v − f h ′ ( f 0 ) v = v ( h ( f 0 ) − h ′ ( f 0 ) f 0 ) f'v-fh'(f_0)v=v(h(f_0)-h'(f_0)f_0) fvfh(f0)v=v(h(f0)h(f0)f0)
f ′ v + f v ′ = v ( h ( f 0 ) − h ′ ( f 0 ) f 0 ) f'v+fv'=v(h(f_0)-h'(f_0)f_0) fv+fv=v(h(f0)h(f0)f0)
( f v ) ′ = v ( h ( f 0 ) − h ′ ( f 0 ) f 0 ) (fv)'=v(h(f_0)-h'(f_0)f_0) (fv)=v(h(f0)h(f0)f0)
f = 1 v ∫ ( v ( h ( f 0 ) − h ′ ( f 0 ) f 0 ) ) d x f=\frac{1}{v}\int(v(h(f_0)-h'(f_0)f_0))\mathrm{dx} f=v1(v(h(f0)h(f0)f0))dx

因为这个和具体 h h h没有关系所以可以通用

对于原来的 h h h

那么就有 f = 1 v ∫ ( v ( 1 − 1 2 A f 0 2 ) ) d x f=\frac 1 v\int(v(1-\frac 1 2Af_0^2))\mathrm{dx} f=v1(v(121Af02))dx

复杂度 O ( n l o g n ) O(nlogn) O(nlogn)跑的远没有 n l o g 2 n nlog^2n nlog2n

这东西知道一下就好了
除了理论复杂度以外其他都比不过分治 n t t ntt ntt

#include<bits/stdc++.h>
using namespace std;
#define cs const
#define pb push_back
#define re register
#define ll long long
#define pii pair<int,int>
#define fi first
#define bg begin
#define se second
#define poly vector<int>
cs int RLEN=1<<20|1;
inline char gc(){
	static char ibuf[RLEN],*ib,*ob;
	(ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
	return (ib==ob)?EOF:*ib++;
}
#define gc getchar
inline int read(){
	char ch=gc();
	int res=0;bool f=1;
	while(!isdigit(ch))f^=ch=='-',ch=gc();
	while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
	return f?res:-res;
}
template<class tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
template<class tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
cs int mod=998244353,G=3;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
inline void Dec(int &a,int b){a-=b,a+=a>>31&mod;}
inline int mul(int a,int b){static ll r;r=1ll*a*b;return r>=mod?r%mod:r;}
inline void Mul(int &a,int b){static ll r;r=1ll*a*b;a=r>=mod?r%mod:r;}
inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
inline int Inv(int x){return ksm(x,mod-2);}
cs int C=20;
int *w[C+1],rev[(1<<C)|5],inv[(1<<C)+5];
inline void init_w(){
	for(int i=1;i<=C;i++)w[i]=new int[1<<(i-1)];
	int wn=ksm(G,(mod-1)/(1<<C));
	inv[0]=inv[1]=w[C][0]=1;
	for(int i=1;i<(1<<(C-1));i++)w[C][i]=mul(w[C][i-1],wn);
	for(int i=C-1;i;i--)
	for(int j=0;j<(1<<(i-1));j++)w[i][j]=w[i+1][j<<1];
	for(int i=2,lim=(1<<(C-1));i<lim;i++)inv[i]=mul(mod-mod/i,inv[mod%i]);
}
inline void init_rev(int lim){
	for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1));
}
inline void ntt(poly &f,int lim,int kd){
	for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]);
	for(int mid=1,l=1,a0,a1;mid<lim;mid<<=1,l++)
	for(int i=0;i<lim;i+=mid<<1)
	for(int j=0;j<mid;j++)
	a0=f[i+j],a1=mul(f[i+j+mid],w[l][j]),f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1);
	if(kd==-1){
		reverse(f.bg()+1,f.bg()+lim);
		for(int i=0,iv=Inv(lim);i<lim;i++)Mul(f[i],iv);
	}
}
inline poly operator *(poly a,poly b){
	int deg=a.size()+b.size()-1,lim=1;
	if(deg<=32){
		poly c(deg,0);
		for(int i=0;i<a.size();i++)
		for(int j=0;j<b.size();j++)
		Add(c[i+j],mul(a[i],b[j]));
		return c;
	}
	while(lim<deg)lim<<=1;
	init_rev(lim);
	a.resize(lim),b.resize(lim);
	ntt(a,lim,1),ntt(b,lim,1);
	for(int i=0;i<lim;i++)Mul(a[i],b[i]);
	ntt(a,lim,-1),a.resize(deg);
	return a;
}
inline poly Inv(poly a,int deg){
	poly b(1,Inv(a[0])),c;
	for(int lim=4;lim<(deg<<2);lim<<=1){
		c.resize(lim>>1);
		for(int i=0;i<(lim>>1);i++)c[i]=(i<a.size())?a[i]:0;
		init_rev(lim);
		b.resize(lim),c.resize(lim);
		ntt(c,lim,1),ntt(b,lim,1);
		for(int i=0;i<lim;i++)Mul(b[i],dec(2,mul(c[i],b[i])));
		ntt(b,lim,-1),b.resize(lim>>1);
	}b.resize(deg);return b;
}
inline poly deriv(poly a){
	for(int i=0;i+1<a.size();i++)a[i]=mul(a[i+1],i+1);
	a.pop_back();return a;
}
inline poly integ(poly a){
	a.pb(0);
	for(int i=(int)a.size()-1;~i;i--)a[i]=mul(a[i-1],inv[i]);
	a[0]=0;return a;
}
inline poly Ln(poly a,int deg){
	a=integ(Inv(a,deg)*deriv(a)),a.resize(deg);return a;
}
inline poly exp(poly a,int deg){
	poly b(1,1),c;
	for(int lim=2;lim<(deg<<1);lim<<=1){
		c=Ln(b,lim);
		for(int i=0;i<lim;i++)c[i]=dec((i<a.size())?a[i]:0,c[i]);
		Add(c[0],1);
		b=b*c,b.resize(lim);
	}b.resize(deg);
	return b;
}
cs int N=200010;
int n,a[N],fac[N],ifac[N];
inline poly calc(int lim){
	if(lim==1)return poly(1,0);
	poly f0=calc((lim+1)>>1);
	poly p,v;
	for(int i=0;i<lim;i++)p.pb(a[i]);
	p=p*f0,v=integ(p),v.resize(lim);
	for(int i=0;i<lim;i++)v[i]=dec(0,v[i]);
	v=exp(v,lim);
	poly h=p*f0;h.resize(lim);
	for(int i=0;i<lim;i++)h[i]=dec(0,mul(inv[2],h[i]));
	Add(h[0],1),h=integ(v*h);
	h=h*Inv(v,lim),h.resize(lim);
	return h;
}
inline void init_inv(){
	cs int len=N-5;
	fac[0]=ifac[0]=1;
	for(int i=1;i<=len;i++)fac[i]=mul(fac[i-1],i);
	ifac[len]=Inv(fac[len]);
	for(int i=len-1;i;i--)ifac[i]=mul(ifac[i+1],i+1);
}
char s[N];
int main(){
	#ifdef Stargazer
	freopen("lx.cpp","r",stdin);
	#endif
	init_w(),init_inv();
	n=read();
	scanf("%s",s);
	for(int i=0;i<n;i++)a[i]=mul(ifac[i],s[i]=='1');
	poly ans=calc(n+1);
	for(int i=1;i<=n;i++)cout<<mul(fac[i],ans[i])<<'\n';
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值