LFSR和特征函数

测试课程碰到了随机向量生成方面的内容,碰到了线性反馈移位寄存器(Linear Feedback Shift Registers,LFSR)。课件上只简单提了一下,但没有说EE和IE两者结构的区别,以及对应特征函数的作用。全网搜了一通,也没看到说清楚的,最后还是在bing上搜到一篇比较好的课件,特来记录一番。

一、LFSR是什么

LFSR有两者类型,外部反馈型和内部反馈型:1620278632(1).jpg

两个电路明显的区别是,EF只更新最后一位,其余移位,且关键路径更长;IF不单纯移位,关键路径更短。

给定初始状态,每个周期会有新的输出,如果选择特定的反馈电路,那么寄存器组成的向量可以遍历除0向量外的其他 2 n − 1 2^n-1 2n1个向量,单端的输出便是以 2 n − 1 2^n-1 2n1为周期的伪随机数,因此这种电路经常用做伪随机数发生器,IF LFSR也会用来做CRC的编解码。

假设初始状态是1000,那么两个电路寄存器的更新序列如下:

序号EFIF
110001000
211000100
311100010
401110001
500111101
600011110
710001000

两个电路的周期都是6,但如果更换电路,那么序列周期大不一样:
1620278632(1) - 副本.jpg

序号EFIF
110001000
201000100
300100010
410010001
511001100
601100110
710110011
801011101
910101010
1011010101
1111101110
1211110111
1301111111
1400111011
1500011001
1610001000

这两个电路反馈的位置有某种对称性,是否有方法直接判断电路的周期数呢,或者该如何设计电路,让其产生 2 n − 1 2^n-1 2n1周期的伪随机数?

二、特征函数

多亏了数学家们的努力,这种LFSR电路可以用特征多项式的形式表示:
image.png

上面两个例子对应特征多项式分别是:
f 1 ( x ) = x 4 + x 3 + x + 1 f 2 ( x ) = x 4 + x + 1 \begin{aligned} f_1(x)&=x^4+x^3+x+1\\ f_2(x)&=x^4+x+1 \end{aligned} f1(x)f2(x)=x4+x3+x+1=x4+x+1
那么特征多项式有什么用呢?

1、判断周期

第一种电路的周期是6,我们可以验证: x 6 + 1 x^6+1 x6+1能被 f 1 ( x ) f_1(x) f1(x)整除:
x 6 + 1 = ( x 4 + x 3 + x + 1 ) ( x 2 + x + 1 ) x^6+1=(x^4+x^3+x+1)(x^2+x+1) x6+1=(x4+x3+x+1)(x2+x+1)
注意这里的“加法”是异或逻辑,相同指数项相加,偶数个为0,奇数个为1,如 x 3 + x 3 = 0 , x 2 + x 2 + x 2 = x 2 x^3+x^3=0,x^2+x^2+x^2=x^2 x3+x3=0,x2+x2+x2=x2
同理,第二种电路的周期是15,可以验证: x 15 + 1 x^{15}+1 x15+1能被 f 2 ( x ) f_2(x) f2(x)整除:
x 15 + 1 = ( x 4 + x + 1 ) ( x 11 + x 8 + x 7 + x 5 + x 3 + x 2 + x + 1 ) x^{15}+1=(x^4+x+1)(x^{11}+x^8+x^7+x^5+x^3+x^2+x+1) x15+1=(x4+x+1)(x11+x8+x7+x5+x3+x2+x+1)

2、计算下一个向量序列

对于IE结构,如果当前向量为 S 0 S_0 S0,那么下一个向量 S 1 S_1 S1既可以通过电路得到,也可以由多项式得到:
S 1 = ( S 0 ∗ x ) % f ( x ) S_1=(S_0 *x) \% f(x) S1=(S0x)%f(x)
比如 S 0 = 0011 = x 2 + x 3 S_0=0011=x^2+x^3 S0=0011=x2+x3,那么:
S 1 = ( x 2 + x 3 ) x % ( x 4 + x + 1 ) = ( x 4 + x 3 ) % ( x 4 + x + 1 ) = x 3 + x + 1 = 1101 S_1=(x^2+x^3)x \% (x^4+x+1)=(x^4+x^3)\%(x^4+x+1)=x^3+x+1=1101 S1=(x2+x3)x%(x4+x+1)=(x4+x3)%(x4+x+1)=x3+x+1=1101

3、由本征f(x)构造伪随机数电路

1620283346(1).jpg

如果我们想产生周期为 2 1 0 − 1 = 1023 2^10-1=1023 2101=1023的伪随机数,那么可以取本征多项式 f ( x ) = x 10 + x 3 + 1 f(x)=x^{10}+x^3+1 f(x)=x10+x3+1,得到相应EF或IF电路。

三、EF和IF关系

有一个奇怪的问题是,上面定义的EF和IF的电路从时序上看,它们产生序列的顺序并不一样,那么它们为什么对应相同的特征多项式?
这张图给出了答案:
image.png
相同的特征多项式表示电路产生的各类周期是一样的,它表示更抽象层面的相同结构,比如上述电路可以分为两个1周期,一个2周期,一个4周期的情况,总共是8种状态。

原文

  • 7
    点赞
  • 59
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值