python实现线性判别分析 (LDA) 降维算法

1.线性判别分析 (LDA) 降维算法的Python实现

线性判别分析(Linear Discriminant Analysis,LDA)是一种常用的降维技术,特别适用于有监督的分类问题。它通过投影到较低维度空间,最大化类间方差并最小化类内方差,从而实现数据的线性分离。LDA 不仅降低了数据的维度,还保留了用于区分类别的信息,使其在分类问题中具有良好的表现。

2.LDA算法的基本思想

LDA旨在通过寻找一个将数据投影到的线性子空间,使得投影后的类间方差最大化,同时类内方差最小化。这样可以保证不同类别的样本在投影后尽可能分离,且同一类别的样本尽可能聚集。

2.1类间方差矩阵 S B S_B SB

类间方差矩阵 S B S_B SB 用于衡量不同类别的均值之间的散布程度。公式为:

S B = ∑ i = 1 k N i ( μ i − μ ) ( μ i − μ ) T S_B = \sum_{i=1}^{k} N_i (\mu_i - \mu)(\mu_i - \mu)^T SB=i=1kNi(μiμ)(μiμ)T

其中:

  • N i N_i Ni 表示第 i i i 类的样本数
  • μ i \mu_i μi 是第 i i i 类的均值向量
  • μ \mu μ 是所有样本的均值向量
  • k k k 是类别的数量
2.2类内方差矩阵 S W S_W SW

类内方差矩阵 S W S_W SW 用于衡量每个类别内部的样本散布程度。公式为:

S W = ∑ i = 1 k ∑ x ∈ C i ( x − μ i ) ( x − μ i ) T S_W = \sum_{i=1}^{k} \sum_{x \in C_i} (x - \mu_i)(x - \mu_i)^T SW=i=1kxCi(xμi)(xμi)T

其中:

  • x x x 表示每个样本
  • C i C_i Ci 表示第 i i i 类的样本集合
2.3优化目标

LDA的目标是找到一个投影矩阵 W W W,使得投影后的样本最大化类间方差和类内方差的比值:

W = argmax ∣ W T S B W ∣ ∣ W T S W W ∣ W = \text{argmax} \frac{|W^T S_B W|}{|W^T S_W W|} W=argmaxWTSWWWTSBW

通过求解该优化问题,LDA可以找到最优的投影矩阵,将高维数据投影到低维空间。

3.LDA的Python实现

接下来,我们使用面向对象编程(OOP)的思想在Python中实现LDA算法。我们将创建一个 LDA 类,包含训练模型、降维和预测功能。

import numpy as np

class LDA:
    def __init__(self, n_components=None):
        """
        初始化LDA模型
        :param n_components: 降维后的目标维度,如果为None,则降至类别数-1的维度
        """
        self.n_components = n_components
        self.means_ = None
        self.scalings_ = None
        self.explained_variance_ratio_ = None

    def fit(self, X, y):
        """
        训练LDA模型
        :param X: 输入数据矩阵,形状为 (n_samples, n_features)
        :param y: 标签数组,形状为 (n_samples,)
        """
        n_samples, n_features = X.shape
        classes = np.unique(y)
        n_classes = len(classes)

        if self.n_components is None:
            self.n_components = n_classes - 1

        # 计算总体均值
        mean_overall = np.mean(X, axis=0)

        # 初始化类内方差矩阵和类间方差矩阵
        S_W = np.zeros((n_features, n_features))
        S_B = np.zeros((n_features, n_features))

        for c in classes:
            X_c = X[y == c]
            mean_c = np.mean(X_c, axis=0)
            S_W += (X_c - mean_c).T @ (X_c - mean_c)
            n_c = X_c.shape[0]
            mean_diff = (mean_c - mean_overall).reshape(n_features, 1)
            S_B += n_c * (mean_diff @ mean_diff.T)

        # 求解广义特征值问题
        A = np.linalg.inv(S_W) @ S_B
        eigvals, eigvecs = np.linalg.eig(A)

        # 按照特征值的绝对值大小排序
        eigvecs = eigvecs[:, np.argsort(-np.abs(eigvals))]
        eigvals = eigvals[np.argsort(-np.abs(eigvals))]

        # 选择前n_components个特征向量
        self.scalings_ = eigvecs[:, :self.n_components]
        self.explained_variance_ratio_ = np.abs(eigvals[:self.n_components]) / np.sum(np.abs(eigvals))

        # 保存每个类别的均值
        self.means_ = {}
        for c in classes:
            self.means_[c] = np.mean(X[y == c], axis=0)

    def transform(self, X):
        """
        将数据投影到LDA子空间
        :param X: 输入数据矩阵,形状为 (n_samples, n_features)
        :return: 投影后的数据,形状为 (n_samples, n_components)
        """
        return X @ self.scalings_

    def predict(self, X):
        """
        使用LDA模型进行分类预测
        :param X: 输入数据矩阵,形状为 (n_samples, n_features)
        :return: 预测标签,形状为 (n_samples,)
        """
        X_projected = self.transform(X)
        preds = []
        for x in X_projected:
            distances = [np.linalg.norm(x - mean) for mean in self.means_.values()]
            preds.append(np.argmin(distances))
        return np.array(preds)

    def fit_transform(self, X, y):
        """
        训练模型并返回投影后的数据
        :param X: 输入数据矩阵,形状为 (n_samples, n_features)
        :param y: 标签数组,形状为 (n_samples,)
        :return: 投影后的数据,形状为 (n_samples, n_components)
        """
        self.fit(X, y)
        return self.transform(X)

4.代码解析

  1. 初始化

    • __init__ 方法初始化了LDA模型,包括目标维度 n_components,类均值 means_,特征向量 scalings_,以及解释方差比 explained_variance_ratio_
  2. 训练模型

    • fit 方法计算类内方差矩阵 S W S_W SW 和类间方差矩阵 S B S_B SB,并通过求解广义特征值问题找到投影矩阵 scalings_。同时,该方法保存每个类别的均值以便后续分类使用。
  3. 数据投影

    • transform 方法将输入数据投影到LDA子空间,返回降维后的数据。
  4. 预测分类

    • predict 方法将投影后的数据与每个类别的均值进行比较,基于欧氏距离进行分类预测。
  5. 训练并投影

    • fit_transform 方法结合了 fittransform,方便一次性完成训练和投影。

5.实际应用场景:手写数字识别

为了展示LDA的实际应用,我们使用手写数字数据集(如MNIST)来实现分类任务。这个数据集包含0-9的手写数字图像,通过LDA降维后,我们可以将其投影到2D或3D空间中进行可视化,并在低维空间中进行分类。

5.1数据准备

首先,我们从数据集中提取样本,并将图像展平为一维向量。

from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# 加载数据集
digits = load_digits()
X, y = digits.data, digits.target

# 数据标准化
scaler = StandardScaler()
X = scaler.fit_transform(X)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
5.2使用LDA降维

接下来,我们使用LDA将数据降维至2D,并可视化投影结果。

# 初始化LDA模型并进行训练
lda = LDA(n_components=2)
X_train_lda = lda.fit_transform(X_train, y_train)

# 可视化LDA投影结果
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 6))
for i in range(10):
    plt.scatter(X_train_lda[y_train == i, 0], X_train_lda[y_train == i, 1], label=f'Class {i}')
plt.xlabel('LDA Component 1')
plt.ylabel('LDA Component 2')
plt.legend()
plt.title('LDA Projection of Digits Dataset')
plt.show()
5.3分类效果

最后,我们使用LDA进行分类,并评估模型的性能。

# 使用LDA

进行分类预测
y_pred = lda.predict(X_test)

# 计算准确率
from sklearn.metrics import accuracy_score

accuracy = accuracy_score(y_test, y_pred)
print(f'LDA Classification Accuracy: {accuracy:.4f}')

6.总结

通过LDA算法,我们可以在保证分类信息的前提下将高维数据投影到低维空间,从而减少计算复杂度并提高分类效率。本文展示了LDA的数学原理、Python实现以及在手写数字识别中的应用。通过面向对象编程的方式,我们实现了一个LDA类,集成了训练、投影和分类功能,便于在各种分类问题中应用LDA算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闲人编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值