目录
1. 引言
在政策评估中,了解一个政策干预是否有效,对政府和企业决策具有重要意义。传统统计方法常常难以区分因果关系与相关性,而因果推断通过构建因果模型并利用反事实分析,为我们提供了量化政策效应的有力工具。近年来,DoWhy库作为Python中一个新兴的因果推断工具,提供了一套完整的因果推断流程,从模型假设、识别、估计到验证,让用户能够系统地进行因果效应评估。
本项目将以政策效果评估为例,利用模拟生成的大规模医疗或经济数据,构造一个包含干预变量、混杂因素和结果变量的因果模型,使用DoWhy库进行因果推断,估计政策干预对结果的平均因果效应(ACE)。同时,我们将采用GPU加速部分数据预处理和数值计算任务,并使用PyQt构建一个交互式GUI,将数据加载、模型求解和图表展示实时集成,实现高效、稳定且美观的因果推断系统。
程序运行结果: