联邦学习中的差分隐私保护详解及python实现

摘要

本博客聚焦 “联邦学习中的差分隐私保护”,采用 Python + PyQt6 实现一个示例系统,演示在联邦学习(Federated Learning, FL)中如何通过差分隐私(Differential Privacy, DP)机制保障每个客户端数据的隐私。全文结构如下:

  1. 前言:说明联邦学习与差分隐私的背景及结合动机。
  2. 联邦学习与差分隐私概述:阐述 FL 与 DP 的核心原理与公式。
  3. 数据生成与预处理:生成模拟各客户端本地数据,保存为 ./data/clients_data.csv
  4. 系统架构与流程:使用低版本 Mermaid 绘制架构与流程图。
  5. 核心数学公式:DP‑SGD 中添加噪声公式与隐私预算计算。
  6. 异步任务调度与(可选)GPU 加速:结合 PyQt6 QThreadPool 与 PyTorch 演示本地训练与噪声注入。
  7. PyQt6 GUI 设计:实现 8 大功能模块:数据加载、参数配置、启动联邦训练、查看隐私预算消耗、损失曲线、按钮状态、日志、帮助。
  8. 完整代码实现:自包含、可执行的 Python 代码,注释详尽。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闲人编程

你的鼓励就是我最大的动力,谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值