目录
摘要
本博客聚焦 “联邦学习中的差分隐私保护”,采用 Python + PyQt6 实现一个示例系统,演示在联邦学习(Federated Learning, FL)中如何通过差分隐私(Differential Privacy, DP)机制保障每个客户端数据的隐私。全文结构如下:
- 前言:说明联邦学习与差分隐私的背景及结合动机。
- 联邦学习与差分隐私概述:阐述 FL 与 DP 的核心原理与公式。
- 数据生成与预处理:生成模拟各客户端本地数据,保存为
./data/clients_data.csv
。 - 系统架构与流程:使用低版本 Mermaid 绘制架构与流程图。
- 核心数学公式:DP‑SGD 中添加噪声公式与隐私预算计算。
- 异步任务调度与(可选)GPU 加速:结合 PyQt6
QThreadPool
与 PyTorch 演示本地训练与噪声注入。 - PyQt6 GUI 设计:实现 8 大功能模块:数据加载、参数配置、启动联邦训练、查看隐私预算消耗、损失曲线、按钮状态、日志、帮助。
- 完整代码实现:自包含、可执行的 Python 代码,注释详尽。