粗读Zero-Shot Text-to-Image Generation

        云里雾里的文章,没看懂,方向和我的方向不同就算了,作者写得也感觉有点乱。

        第一阶段是用dEVA编码器把图像编码为32*32的图像标记(iamge tokens)

        第二步用dEVA解码器把标记还原为图像。

        最后用transformer计算图像和token之间的关联度,找出关联度最大的。之后,将读入的文字转为token,就能解码出图像。

### 零样本文本转语音 (Zero-Shot TTS) 技术与实现 #### 定义与概述 零样本学习是指模型能够在不经过特定训练的情况下处理未曾见过的数据类别。对于文本转语音(TTS),这意味着能够合成从未听过的声音或说话者的声音,而无需针对该声音或说话者的额外训练数据。 #### 核心要素 为了实现这一目标,核心在于构建可以泛化至新输入的强大特征表示能力。这通常依赖于预训练的语言模型或其他形式的多模态模型来捕捉不同模式之间的关系[^2]。 #### 数学建模与公式 具体来说,在零样本文本转语音系统中,可能会采用变分自编码器(VAEs)或者生成对抗网络(GANs)等架构来进行声码器的设计;同时利用注意力机制使得模型可以在字符序列和对应的频谱图之间建立联系。此外,还可能涉及到跨域映射函数的学习,以便有效地将源领域中的知识迁移到目标领域上。 #### 实现细节 一种常见的做法是从大量多样化的音频-文字配对数据集中提取通用特性,并通过迁移学习的方式应用于新的个体身上。例如,X-Text 数据集提供了丰富的图像-文本、视频-文本以及音频-文本资源,可用于开发更加鲁棒性的多模态理解能力和表达方式[^1]。 ```python import torch.nn as nn class Vocoder(nn.Module): def __init__(self): super().__init__() self.encoder = Encoder() self.decoder = Decoder() def forward(self, x): z = self.encoder(x) return self.decoder(z) def train_vocoder(vocoder, dataset): optimizer = optim.Adam(vocoder.parameters()) for epoch in range(num_epochs): for batch in dataset: mel_spectrogram = extract_mels(batch['audio']) predicted_audio = vocoder(mel_spectrogram) loss = compute_loss(predicted_audio, batch['audio']) optimizer.zero_grad() loss.backward() optimizer.step() ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值