YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

必读内容📖

1️⃣ 什么!不知道如何改进模型⁉️ 本专栏已更新150多种不同的改进方法,所使用并改进的每一个模块均包含详细的模块分析原理讲解个人总结多种改进方式以及完整的修改流程,所有改进100%可直接运行性价比极高

2️⃣ 找不到合适的模块⁉️ 所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到YOLOv11中,并进行二次创新新颖度高创新度高能够适应不同的任务场景

3️⃣ 不确定自己改进的步骤、结果是否正确⁉️ 订阅专栏即可进群享受模型训练模型改进论文写作投稿选刊,从入门到论文的各种答疑内容,非常适合新手。

4️⃣ 团队内发表数篇SCI论文,熟悉完整的发表流程,已帮助多名同学成功发表论文

专栏内容每周更新3-5篇,专栏实时评分97,全网最高,质量保证。专栏价格会随着文章数量的增加而增加,早订阅早优惠~
一次订阅,永久使用! 🎫 可开发票用于报销

5️⃣ 专栏内容会持续更新,最近更新时间:2025-4-16

所提及的方法同样适用于YOLOv11的分类、检测和分割等任务,并且由于YOLOv11的文件结构和YOLOv12、YOLOv10、YOLOv8基本一致,所有在YOLOv11上的相关改进方法同样适用于YOLOv12、YOLOv10和YOLOv8。此外,想看哪个模块的复现,也可以直接私信我~


YOLOv11模型结构🌟


YOLOv11改进目录一览(持续更新中ing📃)

在这里插入图片描述

项目介绍

在大家购买专栏后,加入学习群便可获得全部的程序文件,下方仅为列出的部分文件截图。在获取到文件后,只需按照将程序放在个人项目中即可运行,训练。群内有我录制的关于如何改进模型的视频,方便大家下载学习。可自行组合成不同的模块,实现针对你数据集的有效涨点。

在这里插入图片描述

专栏购买链接:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!


项目环境版本如下(按照个人硬件配置即可)

  • Python:3.8.10
  • PyTorch:2.0.0
  • CUDA:11.8
  • 编辑器:VS Code
  • Ultralytics:8.3.13

🎓— 基础篇— 🎓

1、目标检测:YOLOv11训练自己的数据集(从代码下载到实例测试)

2、语义分割:YOLOv11的分割模型训练自己的数据集(从代码下载到实例测试)

3、使用AutoDL训练YOLO等计算机视觉网络模型(AutoDL+Xftp+VS Code),附详细操作步骤

4、YOLOv11目标检测模型性能评价指标详解,涉及混淆矩阵、F1-Score、IoU、mAP、参数量、计算量等,一文打尽所有评价指标

5、YOLOv11改进前必看 - YAML模型配置文件详细解读(再也不用担心通道数不匹配) 附网络结构图🌟

6、YOLOv11模型应用过程中的报错处理及疑问解答,涉及环境搭建、模型训练、模块改进、论文写作🌟

7、YOLOv11训练前的准备,将数据集划分成训练集、测试集验证集(附完整脚本及使用说明)🌟

8、YOLOv11改进入门篇 | 手把手讲解改进模块如何实现高效涨点,以SimAM注意力模块为例🌟

9、深入解析 YOLO11 项目包中的文件结构和各文件作用🌟

10、新版本的ultralytics项目包如何配置添加新的模块(base_modules、repeat_modules)🌟


🎓论文写作 — 丰富工作量🎓

1、论文必备 - YOLOv11统计数据集中大、中、小目标数量,附完整代码和详细使用步骤🌟

2、论文必备 - 绘制YOLOv11模型在训练过程中,精准率,召回率,mAP_0.5,mAP_0.5:0.95,以及各种损失的变化曲线

3、论文必备 - YOLOv11输出模型每一层的耗时和GFLOPs,深入比较每一层模块的改进效果🌟

4、论文必备 - YOLOv11热力图可视化,支持指定模型,指定显示层,设置置信度,以及10种可视化实现方式🌟

5、论文必备 - YOLOv11训练前一键扩充数据集,支持9种扩充方法,支持图像和标签同步扩充🌟

6、论文必备 - YOLOv11计算COCO指标和TIDE指标,小目标检测必备,更全面的评估和指导模型性能,包含完整步骤和代码🌟


📈卷积层 — 发文常客📈

1、YOLOv11改进策略【卷积层】| CVPR-2023 部分卷积 PConv 轻量化卷积,降低内存占用

2、YOLOv11改进策略【卷积层】| CVPR-2024 PKI Module 获取多尺度纹理特征,适应尺度变化大的目标🌟

3、YOLOv11改进策略【卷积层】| CVPR-2023 SCConv 空间和通道重建卷积:即插即用,减少冗余计算并提升特征学习

4、YOLOv11改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)🌟

5、YOLOv11改进策略【卷积层】| ICCV-2023 LSK大核选择模块 包含二次独家创新🌟

6、YOLOv11改进策略【卷积层】| 利用MobileNetv4中的UIB、ExtraDW优化C3k2🌟

7、YOLOv11改进策略【卷积层】| ICCV-2023 引入Dynamic Snake Convolution动态蛇形卷积,改进C3k2🌟

8、YOLOv11改进策略【卷积层】| GnConv:一种通过门控卷积和递归设计来实现高效、可扩展、平移等变的高阶空间交互操作

9、YOLOv11改进策略【卷积层】| HWD,引入Haar小波变换到下采样模块中,减少信息丢失🌟

10、YOLOv11改进策略【卷积层】| SAConv 可切换的空洞卷积 二次创新C3k2

11、YOLOv11改进策略【卷积层】| ICCV-2023 SAFM 空间自适应特征调制模块 对C3k2进行二次创新🌟

12、YOLOv11改进策略【卷积层】| AKConv: 具有任意采样形状和任意参数数量的卷积核

13、YOLOv11改进策略【卷积层】| NeurIPS-2022 ParNet 即插即用模块 二次创新C3k2

14、YOLOv11改进策略【卷积层】| CVPR-2024 利用DynamicConv 动态卷积 结合C3k2进行二次创新,提高精度🌟

15、YOLOv11改进策略【卷积层】| 2023 引入注意力卷积模块RFAConv,关注感受野空间特征 助力yolov11精度提升🌟

16、YOLOv11改进策略【卷积层】| SPD-Conv 针对小目标和低分辨率图像的检测任务🌟

17、YOLOv11改进策略【卷积层】| 2023 RCS-OSA 通道混洗的重参数化卷积 二次创新C3k2🌟

18、YOLOv11改进策略【卷积层】| CVPR-2021 多样分支块DBB,替换传统下采样Conv 含二次创新C3k2

19、YOLOv11改进策略【卷积层】| ECCV-2024 小波卷积 增大感受野,降低参数量计算量,独家创新助力涨点🌟

20、YOLOv11改进策略【卷积层】| 2024最新轻量级自适应提取模块 LAE 即插即用 保留局部信息和全局信息🌟

21、YOLOv11改进策略【卷积层】| CVPR-2020 Strip Pooling 空间池化模块 处理不规则形状的对象 含二次创新

22、YOLOv11改进策略【卷积层】| RFEM:感受野增强模块, 解决多尺度目标检测中因感受野不足导致的小目标信息丢失问题🌟


🍀Backbone/主干网络🍀

1、YOLOv11改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合🌟

2、YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为:Swin Transformer,提高多尺度特征提取能力

3、YOLOv11改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式🌟

4、YOLOv11改进策略【Backbone/主干网络】| 2023-CVPR 替换骨干网络为 LSKNet (附网络详解和完整配置步骤)🌟

5、YOLOv11改进策略【Backbone/主干网络】| 2023-CVPR 替换骨干网络为 ConvNeXt V2 (附网络详解和完整配置步骤)🌟

6、YOLOv11改进策略【Backbone/主干网络】| CVPR-2024 替换骨干网络为 PKINet 获取多尺度纹理特征,适应尺度变化大的目标🌟

7、YOLOv11改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力🌟

8、YOLOv11改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题🌟


🔥Conv和Transformer — 发文热点🔥

1、YOLOv11改进策略【Conv和Transformer】| CVPR-2023 BiFormer 稀疏自注意力,减少内存占用🌟

2、YOLOv11改进策略【Conv和Transformer】| 2024 AssemFormer 结合卷积与 Transformer 优势,弥补传统方法不足🌟

3、YOLOv11改进策略【Conv和Transformer】| CVPR-2021 Bottleneck Transformers 简单且高效的自注意力模块

4、YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制和大核卷积简化自注意力机制🌟

5、YOLOv11改进策略【Conv和Transformer】| CVPR-2024 Single-Head Self-Attention 单头自注意力🌟

6、YOLOv11改进策略【Conv和Transformer】| ACmix 卷积和自注意力的结合,充分发挥两者优势

7、YOLOv11改进策略【Conv和Transformer】| 上下文转换器CoT 结合静态和动态上下文信息的注意力机制 (含二次创新C3k2)

8、YOLOv11改进策略【Conv和Transformer】| GRSL-2024 最新模块 卷积和自注意力融合模块 CAFM 减少图像中的噪声干扰🌟

9、YOLOv11改进策略【Conv和Transformer】| 2023 引入CloFormer中的双分支结构,融合高频低频信息(二次创新C2PSA)🌟

10、YOLOv11改进策略【Conv和Transformer】| CVPR-2022 Deformable Attention Transformer 可变形注意力 动态关注目标区域🌟

11、YOLOv11改进策略【Conv和Transformer】| ICCV-2023 iRMB 倒置残差移动块 轻量化的注意力模块

12、YOLOv11改进策略【Conv和Transformer】| ECCV-2024 Histogram Transformer 直方图自注意力 适用于噪声大,图像质量低的检测任务🌟

13、YOLOv11改进策略【Conv和Transformer】| 引入CVPR-2024 RepViT 轻量级的Vision Transformers模块 RepViTBlock🌟


🔥YOLO和Mamba — 最新热点🔥

1、YOLOv11改进策略【YOLO和Mamba】| MLLA:Mamba-Like Linear Attention,融合Mamba设计优势的注意力机制🌟

2、YOLOv11改进策略【YOLO和Mamba】| 替换骨干 Mamba-YOLOv11-T !!! 最新的发文热点🌟

3、YOLOv11改进策略【YOLO和Mamba】| 替换骨干 Mamba-YOLOv11-B !!! 最新的发文热点🌟

4、YOLOv11改进策略【YOLO和Mamba】| 替换骨干 Mamba-YOLOv11-L !!! 最新的发文热点🌟

5、YOLOv11改进策略【YOLO和Mamba】| 2024 VM-UNet,高效的特征提取模块VSS block 二次创新提高精度🌟


🍀模型轻量化 — 加速推理🍀

1、YOLOv11改进策略【模型轻量化】| MoblieNet V4:2024 轻量化网络 移动生态系统的通用模型🌟

2、YOLOv11改进策略【模型轻量化】| MoblieNet V3:基于搜索技术和新颖架构设计的轻量型网络模型🌟

3、YOLOv11改进策略【模型轻量化】| ShuffleNet V1:一个用于移动设备的极其高效的卷积神经网络

4、YOLOv11改进策略【模型轻量化】| Shufflenet V2:通过通道划分构建高效网络,高效的CNN架构设计的实用指南🌟

5、YOLOv11改进策略【模型轻量化】| MoblieOne:改进的1毫秒移动主干网,引入结构重参数化,提高模型检测效率🌟

6、YOLOv11改进策略【模型轻量化】| MobileViT V1:高效的信息编码与融合模块,获取局部和全局信息

7、YOLOv11改进策略【模型轻量化】| GhostNet V1:基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构

8、YOLOv11改进策略【模型轻量化】| GhostNet V2:NeurIPS-2022 Spotlight 利用远距离注意力增强廉价操作🌟

9、YOLOv11改进策略【模型轻量化】| RepViT:CVPR-2024 轻量级的Vision Transformers架构🌟

10、YOLOv11改进策略【模型轻量化】| FasterNet: CVPR-2023 高效快速的部分卷积块🌟

11、YOLOv11改进策略【模型轻量化】| VanillaNet:华为的极简主义骨干网络🌟

12、YOLOv11改进策略【模型轻量化】| EfficientViT:ICCV 2023 用于高分辨率密集预测的多尺度线性关注🌟

13、YOLOv11改进策略【模型轻量化】| StarNet:CVPR-2024 超级精简高效的轻量化模块🌟

14、YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络

15、YOLOv11改进策略【模型轻量化】| EfficientNet v1 :高效的移动倒置瓶颈结构🌟

16、YOLOv11改进策略【模型轻量化】| EfficientNet v2:加速训练,快速收敛🌟

17、YOLOv11改进策略【模型轻量化】| MoblieNetV1:用于移动视觉应用的高效卷积神经网络🌟

18、YOLOv11改进策略【模型轻量化】| MoblieNetV2:线性瓶颈,倒置残差,含模型详解和完整配置步骤🌟

19、YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型🌟

20、YOLOv11改进策略【模型轻量化】| EMO:ICCV 2023,结构简洁的轻量化自注意力模型🌟


📈注意力机制篇 — 发文必备📈

1、YOLOv11改进策略【注意力机制篇】| 2024 PPA 并行补丁感知注意模块,提高小目标关注度🌟

2、YOLOv11改进策略【注意力机制篇】| 添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制

3、YOLOv11改进策略【注意力机制篇】| ICML-2021 引入SimAM注意力模块(一个简单的,无参数的卷积神经网络注意模块)

4、YOLOv11改进策略【注意力机制篇】| GAM全局注意力机制: 保留信息以增强通道与空间的相互作用

5、YOLOv11改进策略【注意力机制篇】| 2023 MCAttention 多尺度交叉轴注意力 获取多尺度特征和全局上下文信息🌟

6、YOLOv11改进策略【注意力机制篇】| 2024 SCSA-CBAM 空间和通道的协同注意模块 二次创新C3k2🌟

7、YOLOv11改进策略【注意力机制篇】| 2024 SCI TOP FCAttention 即插即用注意力模块,增强局部和全局特征信息交互🌟

8、YOLOv11改进策略【注意力机制篇】| EMA 即插即用模块,提高远距离建模依赖

9、YOLOv11改进策略【注意力机制篇】| NAM 即插即用模块,重新优化通道和空间注意力

10、YOLOv11改进策略【注意力机制篇】| 2024 蒙特卡罗注意力(MCAttn)模块,提高小目标的关注度🌟

11、YOLOv11改进策略【注意力机制篇】| CVPR2024 CAA上下文锚点注意力机制🌟

12、YOLOv11改进策略【注意力机制篇】| 引入Shuffle Attention注意力模块,增强特征图的语义表示

13、YOLOv11改进策略【注意力机制篇】| Mixed Local Channel Attention (MLCA) 融合通道、空间、局部和全局信息的新型注意力

14、YOLOv11改进策略【注意力机制篇】| ICLR2023 高效计算与全局局部信息融合的 Sea_Attention 模块(含C2PSA二次创新🌟)

15、YOLOv11改进策略【注意力机制篇】| ICCV2023 聚焦线性注意力模块 Focused Linear Attention 聚焦能力与特征多样性双重提升🌟

16、YOLOv11改进策略【注意力机制篇】| WACV-2021 Triplet Attention 三重注意力模块 - 跨维度交互注意力机制优化

17、YOLOv11改进策略【注意力机制篇】| SENet V2 优化SE注意力机制,聚合通道和全局信息🌟

18、YOLOv11改进策略【注意力机制篇】| CVPRW-2024 分层互补注意力混合层 H-RAMi 针对低质量图像的特征提取模块🌟

19、YOLOv11改进策略【注意力机制篇】| CVPR-2023 FSAS 基于频域的自注意力求解器 结合频域计算和卷积操作 降低噪声影响🌟

20、YOLOv11改进策略【注意力机制篇】| Large Separable Kernel Attention (LSKA) 大核可分离卷积注意力 二次创新C2PSA、C3k2🌟

21、YOLOv11改进策略【注意力机制篇】| WACV-2024 D-LKA 可变形的大核注意 针对大尺度、不规则的目标图像🌟

22、YOLOv11改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率🌟


🚀损失函数篇🚀

1、YOLOv11改进策略【损失函数篇】| 利用MPDIoU,加强边界框回归的准确性

2、YOLOv11改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题🌟

3、YOLOv11改进策略【损失函数篇】| 替换激活函数为Mish、PReLU、Hardswish、LeakyReLU、ReLU6

4、YOLOv11改进策略【损失函数篇】| Inner-IoU损失:通过辅助边界框计算IoU提升检测效果(Inner_GIoU、Inner_DIoU、Inner_CIoU、Inner_EIoU、Inner_SIoU)

5、YOLOv11改进策略【损失函数篇】| Shape-IoU:考虑边界框形状和尺度的更精确度量🌟

6、YOLOv11改进策略【损失函数篇】| 2024 引进Focaler-IoU损失函数 加强边界框回归🌟

7、YOLOv11改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度🌟

8、YOLOv11改进策略【损失函数篇】| 引入Soft-NMS,提升密集遮挡场景检测精度,包括GIoU-NMS、DIoU-NMS、CIoU-NMS、SIoU-NMS、 EIou-NMS

9、YOLOv11改进策略【损失函数篇】| 将激活函数替换为带有注意力机制的激活函数 ARelu🌟

10、YOLOv11改进策略【损失函数篇】| WIoU v3:针对低质量样本的边界框回归损失函数🌟


🚀Neck — 加强特征融合🚀

1、YOLOv11改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 二次创新C3k2 改进颈部网络🌟

2、YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计🌟

3、YOLOv11改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合🌟

4、YOLOv11改进策略【Neck】| 使用CARAFE轻量级通用上采样算子

5、YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度🌟

6、YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络🌟

7、YOLOv11改进策略【Neck】| 2023 显式视觉中心EVC 优化特征提取金字塔,对密集预测任务非常有效🌟

8、YOLOv11改进策略【Neck】| 有效且轻量的动态上采样算子:DySample

9、YOLOv11改进策略【Neck】| ArXiv 2023,基于U - Net v2中的的高效特征融合模块:SDI🌟

10、YOLOv11改进策略【Neck】| PRCV 2023,SBA:特征融合模块,描绘物体轮廓重新校准物体位置,解决边界模糊问题🌟

11、YOLOv11改进策略【Neck】| 替换RT-DETR中的CCFF跨尺度特征融合颈部结构,优化计算瓶颈与冗余问题🌟

12、YOLOv11改进策略【Neck】| HS-FPN:高级筛选特征融合金字塔,加强细微特征的检测🌟

13、YOLOv11改进策略【Neck】| TPAMI 2024 FreqFusion 频域感知特征融合模块 解决密集图像预测问题🌟

14、YOLOv11改进策略【Neck】| NeurIPS 2023 融合GOLD-YOLO颈部结构,强化小目标检测能力🌟

15、YOLOv11改进策略【Neck】| SEAM:分离和增强注意模块,解决复杂场景下的小目标遮挡问题🌟


🚀Head/检测头🚀

1、YOLOv11改进策略【Head】| 引入RT-DETR中的RTDETRDecoder,替换检测头🌟

2、YOLOv11改进策略【Head】| 增加针对 大目标 的检测层 (四个检测头)🌟

3、YOLOv11改进策略【Head】| 结合CVPR-2024 中的DynamicConv 动态卷积 改进检测头, 优化模型(独家改进)🌟

4、YOLOv11改进策略【Head】| ASFF 自适应空间特征融合模块,改进检测头Detect_ASFF🌟

5、YOLOv11改进策略【Head】| AFPN渐进式自适应特征金字塔,增加针对小目标的检测头(附模块详解和完整配置步骤)🌟

6、YOLOv11改进策略【Head/分割头】| 结合CVPR-2024 中的DynamicConv 动态卷积 改进分割头, 优化模型(独家改进)🌟

7、YOLOv11改进策略【Head】| (独家改进)结合 ICME-2024 中的PPA注意力模块,自研带有注意力机制的小目标检测头🌟

8、YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头🌟

9、YOLOv11改进策略【Head】| (独家改进)检测头添加Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能🌟

10、YOLOv11改进策略【Head】| 添加专用于小目标的检测层 附YOLOv1~YOLOv11的检测头变化详解🌟


🚀SPPF/空间金字塔池化🚀

1、YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率

2、YOLOv11改进策略【SPPF】| AIFI : 基于Transformer的尺度内特征交互,在降低计算成本的同时提高模型的性能

3、YOLOv11改进策略【SPPF】| NeuralPS-2022 Focal Modulation : 使用焦点调制模块优化空间金字塔池化SPPF🌟

4、YOLOv11改进策略【SPPF】| 将特征金字塔池化修改为:SPPELAN ,多尺度特征提取与高效特征融合🌟

5、YOLOv11改进策略【SPPF】| 将特征金字塔池化修改为:SPPCSPC,提升模型的特征提取能力和计算效率🌟


🚀特殊场景 — 小目标改进🚀

1、YOLOv11改进策略【小目标改进】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度🌟

2、YOLOv11改进策略【小目标改进】| NWD损失函数,提高小目标检测精度🌟

3、YOLOv11改进策略【小目标改进】| 2024 蒙特卡罗注意力(MCAttn)模块,提高小目标的关注度🌟

4、YOLOv11改进策略【小目标改进】| 2024 PPA 并行补丁感知注意模块,提高小目标关注度🌟

5、YOLOv11改进策略【小目标改进】| SPD-Conv 针对小目标和低分辨率图像的检测任务🌟

6、YOLOv11改进策略【小目标改进】| 添加专用于小目标的检测层 附YOLOv1~YOLOv11的检测头变化详解🌟

7、YOLOv11改进策略【小目标改进】| 2024-TOP 自适应阈值焦点损失(ATFL)提升对小目标的检测能力🌟

8、YOLOv11改进策略【小目标改进】| Shape-NWD:融合改进,结合Shape-IoU和NWD 更好地适应小目标特性🌟

9、YOLOv11改进策略【小目标改进】| NeurIPS 2023 融合GOLD-YOLO颈部结构,强化小目标检测能力🌟

10、YOLOv11改进策略【小目标改进】| RFEM:感受野增强模块, 解决多尺度目标检测中因感受野不足导致的小目标信息丢失问题🌟

11、YOLOv11改进策略【小目标改进】| SEAM:分离和增强注意模块,解决复杂场景下的小目标遮挡问题🌟


🎓独家融合改进 — 达到论文发表要求🎓

1、YOLOv11改进策略【独家融合改进】| MobileNetV4+BiFPN,轻松实现降参涨点,适用专栏内所有的骨干替换🌟

2、YOLOv11改进策略【独家融合改进】| AFPN渐进式自适应特征金字塔 + 注意力机制,适用专栏内所有的注意力模块🌟

3、YOLOv11改进策略【独家融合改进】| AssemFormer + HS-FPN 减少目标尺度变化影响,增加多尺度的学习能力🌟

4、YOLOv11改进策略【独家融合改进】| SPD-Conv+PPA 再次提升模型针对小目标的特征提取能力🌟

5、YOLOv11改进策略【独家融合改进】| Mamba-YOLO+SDI 增强长距离依赖,聚焦目标特征🌟

6、YOLOv11改进策略【独家融合改进】| RepVit+ASF-YOLO,轻量提点,适用专栏内所有的骨干替换🌟

7、YOLOv11改进策略【独家融合改进】| 模型轻量化二次改进:StarNet + FreqFusion,极限降参,适用专栏内所有轻量化模型🌟

8、YOLOv11改进策略【独家融合改进】| U-Net V2 + CCFF,加强跨尺度的上下文特征融合,提高模型特征提取能力🌟

9、YOLOv11改进策略【独家融合改进】| StarNet + 小目标检测头,加强跨尺度的上下文特征融合,提高小目标检测能力🌟


🔗模型剪枝🔗

待续~


🔗模型蒸馏🔗

YOLOv11知识蒸馏,实现无损涨点,包含逻辑蒸馏和特征蒸馏中的不同蒸馏方法,适用专栏内的所有模型🌟

为了有效地应用Transformer Block和频域特征学习在文档图像恢复项目中,推荐深入阅读《深度学习模糊文档图像恢复新方法:变换器模块和频域学习优化》一书。该书详细介绍了如何将深度学习技术,特别是Transformer Block和频域特征学习技术,应用于图像质量提升的最新研究和实践案例。 参考资源链接:[深度学习模糊文档图像恢复新方法:变换器模块和频域学习优化](https://wenku.csdn.net/doc/886jyyxoo2?spm=1055.2569.3001.10343) Transformer Block在图像恢复任务中通过其强大的全局依赖捕捉能力,能够更有效地处理图像的长距离依赖问题,这对于图像质量的提升至关重要。Transformer Block的核心是自注意力机制,它能够将图像中的每个位置与其它所有位置关联起来,从而捕捉到更丰富的图像特征。 频域特征学习是指在图像的频率表示中进行特征提取和处理。它与传统的空间域特征学习不同,通过观察图像在频率上的分布,可以捕捉到更多关于图像结构和纹理的细节信息。在频域中使用快速傅里叶变换(FFT)可以将图像从空间域转换到频域,从而利用频域中的信息进行图像恢复。 结合Transformer Block和频域特征学习,可以通过在Transformer结构中嵌入频域特征提取的模块,如Res FFT-conv Block,来进一步提升网络的性能。这样的网络架构能够同时利用Transformer Block的全局上下文信息捕捉能力和频域特征学习对细节的敏感性,从而在文档图像恢复中取得更好的效果。 在实际操作中,可以使用PaddlePaddle框架实现这些技术。以下是一个简单的代码示例,展示如何在PaddlePaddle中结合Transformer Block和频域特征学习模块: ```python import paddle import paddle.nn as nn class FFTConv(nn.Layer): def __init__(self): super(FFTConv, self).__init__() # 定义FFT模块 self.fft = nn.FFT() # 定义卷积模块 self.conv = nn.Conv2D(...) def forward(self, x): # 将输入转换到频域 x_fft = self.fft(x) # 在频域中进行特征学习 x_fft = self.conv(x_fft) # 将频域特征转换回空间域 x = self.fft.ifft(x_fft) return x class TransformerBlock(nn.Layer): def __init__(self): super(TransformerBlock, self).__init__() # 定义自注意力机制 self.self_attention = nn.MultiHeadAttention(...) # 定义FFT特征学习模块 self.fft_conv = FFTConv(...) def forward(self, x): # 自注意力机制处理 x = self.self_attention(x, x, x) # 结合FFT特征学习模块 x = self.fft_conv(x) return x # 实例化Transformer Block并应用于输入图像 transformer = TransformerBlock() output_image = transformer(input_image) ``` 在这个示例中,我们首先定义了一个FFTConv类,它包含了FFT模块和卷积模块,用于在频域中进行特征学习。然后定义了TransformerBlock类,它结合了自注意力机制和FFT特征学习模块。最后实例化了TransformerBlock,并将其应用于输入图像,以恢复文档图像的质量。 通过学习和应用这些高级技术,您将能够显著提高文档图像的恢复效果。如果您希望继续深入了解这些方法和技巧,建议阅读《深度学习模糊文档图像恢复新方法:变换器模块和频域学习优化》一书,它将为您提供一个全面的知识体系和实用的解决方案。 参考资源链接:[深度学习模糊文档图像恢复新方法:变换器模块和频域学习优化](https://wenku.csdn.net/doc/886jyyxoo2?spm=1055.2569.3001.10343)
评论 92
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值