光谱SNV预处理——基于Python实现

SNV(Standard Normal Variate)预处理是一种常用的高光谱数据预处理方法,用于消除光谱数据中的散射效应和基线漂移等干扰因素,提高数据的建模性能。

SNV预处理的基本思想是对每个样本的光谱数据进行标准化,使其均值为0,标准差为1。具体步骤如下:

  1. 对于每个样本的光谱数据,计算其所有波段的平均值和标准差。

  2. 对每个样本的每个波段,减去该样本的平均值,然后除以该样本的标准差。

SNV预处理的优点包括:

  1. 消除了光谱数据中的散射效应和基线漂移等干扰因素,提高了数据的可比性。

  2. 不需要参考样本或额外的信息,每个样本独立进行预处理,易于实现。

  3. 预处理后的数据具有零均值和单位方差,便于后续的建模和分析。

其具体实现如下:

import numpy as np
import pandas as pd

def snv(data):
    """
    对输入数据进行标准正态变量(SNV)预处理
    :param data: 二维numpy数组,每一行代表一个样本,每一列代表一个波段
    :return: 预处理后的数据
    """
    # 计算每个样本的平均值和标准差
    mean = np.mean(data, axis=1, keepdims=True)
    std = np.std(data, axis=1, keepdims=True)
    
    # 对每个样本进行标准化
    snv_data = (data - mean) / std
    
    return snv_data

# 读取CSV文件
df = pd.read_csv('hyperspectral_data.csv')

# 提取波段名称
bands = df.columns[:-1].tolist()

# 提取标签
labels = df.iloc[:, -1].values

# 提取光谱数据
spectral_data = df.iloc[:, :-1].values

# 对光谱数据进行SNV预处理
preprocessed_data = snv(spectral_data)

# 将预处理后的数据转换为DataFrame
preprocessed_df = pd.DataFrame(preprocessed_data, columns=bands)

# 将标签添加到DataFrame的最后一列
preprocessed_df['label'] = labels

# 保存预处理后的数据到新的CSV文件
preprocessed_df.to_csv('preprocessed_data.csv', index=False)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值