SNV(Standard Normal Variate)预处理是一种常用的高光谱数据预处理方法,用于消除光谱数据中的散射效应和基线漂移等干扰因素,提高数据的建模性能。
SNV预处理的基本思想是对每个样本的光谱数据进行标准化,使其均值为0,标准差为1。具体步骤如下:
-
对于每个样本的光谱数据,计算其所有波段的平均值和标准差。
-
对每个样本的每个波段,减去该样本的平均值,然后除以该样本的标准差。
SNV预处理的优点包括:
-
消除了光谱数据中的散射效应和基线漂移等干扰因素,提高了数据的可比性。
-
不需要参考样本或额外的信息,每个样本独立进行预处理,易于实现。
-
预处理后的数据具有零均值和单位方差,便于后续的建模和分析。
其具体实现如下:
import numpy as np
import pandas as pd
def snv(data):
"""
对输入数据进行标准正态变量(SNV)预处理
:param data: 二维numpy数组,每一行代表一个样本,每一列代表一个波段
:return: 预处理后的数据
"""
# 计算每个样本的平均值和标准差
mean = np.mean(data, axis=1, keepdims=True)
std = np.std(data, axis=1, keepdims=True)
# 对每个样本进行标准化
snv_data = (data - mean) / std
return snv_data
# 读取CSV文件
df = pd.read_csv('hyperspectral_data.csv')
# 提取波段名称
bands = df.columns[:-1].tolist()
# 提取标签
labels = df.iloc[:, -1].values
# 提取光谱数据
spectral_data = df.iloc[:, :-1].values
# 对光谱数据进行SNV预处理
preprocessed_data = snv(spectral_data)
# 将预处理后的数据转换为DataFrame
preprocessed_df = pd.DataFrame(preprocessed_data, columns=bands)
# 将标签添加到DataFrame的最后一列
preprocessed_df['label'] = labels
# 保存预处理后的数据到新的CSV文件
preprocessed_df.to_csv('preprocessed_data.csv', index=False)