基于Python的高光谱PLS-DA分类建模

偏最小二乘判别分析(Partial Least Squares Discriminant Analysis, PLS-DA)是一种有监督的线性判别方法,它结合了偏最小二乘回归(PLS)和判别分析(DA)的优点,能够有效处理高维小样本、多重共线性等问题,在高光谱分类领域得到了广泛应用。

PLS-DA的基本原理是在PLS回归的基础上引入判别分析,将样本的类别信息融入到潜变量提取过程中。具体来说,PLS-DA先将类别标签进行虚拟变量编码(如One-hot编码),然后将编码后的虚拟变量作为Y,原始光谱数据作为X,构建PLS回归模型。通过最大化X和Y之间的协方差,提取出一系列同时兼顾自变量和因变量方差的潜变量,再基于这些潜变量进行判别分析和分类预测。

下面我们使用Python中的Scikit-learn库,演示高光谱PLS-DA分类建模的实现步骤:

  1. 数据读取与划分
    使用Pandas库读取训练集和测试集数据(Excel格式),并划分为特征变量X和类别标签y。

  2. 类别标签编码
    将训练集和测试集的类别标签y进行One-hot编码,转换为虚拟变量矩阵。

  3. 构建PLS-DA模型
    创建PLSRegression对象,设置潜变量数n_components,使用fit方法拟合模型。这里潜变量数是PLS-DA的关键参数,需要根据问题复杂度和预测性能进行调优。

  4. 模型预测
    使用训练好的PLS-DA模型对训练集和测试集进行预测,得到预测概率矩阵。将概率矩阵转换为类别标签。

  5. 模型评估
    计算训练集和测试集的混淆矩阵、分类准确率等评价指标。通过比较训练集和测试集的性能,分析模型的拟合能力和泛化能力。

  6. 可视化分析
    绘制PLS-DA模型的ROC曲线和AUC值,直观评估模型的整体分类性能。ROC曲线横坐标为假正率,纵坐标为真正率,曲线下面积AUC越大说明模型的分类效果越好。

具体实现代码如下:

from sklearn.cr
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值