偏最小二乘判别分析(Partial Least Squares Discriminant Analysis, PLS-DA)是一种有监督的线性判别方法,它结合了偏最小二乘回归(PLS)和判别分析(DA)的优点,能够有效处理高维小样本、多重共线性等问题,在高光谱分类领域得到了广泛应用。
PLS-DA的基本原理是在PLS回归的基础上引入判别分析,将样本的类别信息融入到潜变量提取过程中。具体来说,PLS-DA先将类别标签进行虚拟变量编码(如One-hot编码),然后将编码后的虚拟变量作为Y,原始光谱数据作为X,构建PLS回归模型。通过最大化X和Y之间的协方差,提取出一系列同时兼顾自变量和因变量方差的潜变量,再基于这些潜变量进行判别分析和分类预测。
下面我们使用Python中的Scikit-learn库,演示高光谱PLS-DA分类建模的实现步骤:
-
数据读取与划分
使用Pandas库读取训练集和测试集数据(Excel格式),并划分为特征变量X和类别标签y。 -
类别标签编码
将训练集和测试集的类别标签y进行One-hot编码,转换为虚拟变量矩阵。 -
构建PLS-DA模型
创建PLSRegression对象,设置潜变量数n_components,使用fit方法拟合模型。这里潜变量数是PLS-DA的关键参数,需要根据问题复杂度和预测性能进行调优。 -
模型预测
使用训练好的PLS-DA模型对训练集和测试集进行预测,得到预测概率矩阵。将概率矩阵转换为类别标签。 -
模型评估
计算训练集和测试集的混淆矩阵、分类准确率等评价指标。通过比较训练集和测试集的性能,分析模型的拟合能力和泛化能力。 -
可视化分析
绘制PLS-DA模型的ROC曲线和AUC值,直观评估模型的整体分类性能。ROC曲线横坐标为假正率,纵坐标为真正率,曲线下面积AUC越大说明模型的分类效果越好。
具体实现代码如下:
from sklearn.cr