高光谱特征波段选择算法——CARS算法

光谱在食品检测等领域得到广泛应用,然而,光谱数据通常包含大量波段,存在信息冗余和多重共线性等问题,直接使用原始光谱数据建模易导致过拟合和模型泛化能力差。因此,有必要在建模之前,从海量波段中筛选出最相关的特征波段,降低数据维度。

竞争适应性重加权采样(Competitive Adaptive Reweighted Sampling, CARS)是一种有效的光谱特征波段选择算法。其基本思想是通过蒙特卡洛采样和指数衰减函数,自适应地调整各波段的选择概率,最终选出对建模性能贡献最大的最优波段组合。

load 'data.mat'; % example data
Xtrain = train;
Xtest = test;
ytrain = trainlabel;
ytest = testlabel;    

Amax=20; % Maximal allowed number of PLS components
method='center'; % data pretreatment (internal use)
N=500; % number of Mnote Carlo samplings.
MCCV=plsmccv(Xtrain,ytrain,Amax,method,N); % run MCCV
plot(MCCV.RMSECV,'b-o','linewidth',2); % plot RMSECV values at each number of latent variables(LVs)
xlabel('NO. of LVs','FontSize',20);
ylabel('RMSECV','FontSize',20);


% Variable selection using the CARS method.   'autos
### 关于光谱特征波段选择算法 #### 基于遗传算法的波长选择方法 一种有效的波长选择策略是采用基于遗传优化的方法来挑选最具代表性的波长。这种方法通过模拟自然界的进化过程,在众多可能的选择方案中找到最优解。具体来说,该技术利用了遗传算法的核心机制——即交叉、变异以及选择操作,从而实现对大量候选波长的有效筛选[^1]。 ```python import numpy as np from deap import base, creator, tools, algorithms def evaluate(individual): # 定义适应度评估函数 pass toolbox = base.Toolbox() creator.create("FitnessMax", base.Fitness, weights=(1.0,)) creator.create("Individual", list, fitness=creator.FitnessMax) # 初始化种群并设置遗传算子参数 population = toolbox.population(n=300) NGEN = 40 for gen in range(NGEN): offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.2) fits = map(toolbox.evaluate, offspring) for fit, ind in zip(fits, offspring): ind.fitness.values = (fit,) population = toolbox.select(offspring, k=len(population)) ``` #### CARS(Competitive Adaptive Reweighted Sampling)算法 另一种流行的高光谱特征波段选择方式为CARS算法。此方法旨在通过对样本权重进行自适应调整,逐步剔除冗余信息,最终保留最能反映目标特性的少数几个波段作为特征向量。在实际应用中,通常会调用`carspls`函数完成这一过程,其中涉及的关键输入包括训练集内的光谱矩阵Xtrain及其对应的类别标签ytrain等要素[^2]。 ```r library(pls) library(cars) result <- carspls(Xtrain=X_train_matrix, ytrain=y_labels_vector, numComp=optimal_components_number) selected_bands <- result$wavelengths[result$coefficients != 0] ``` #### 随机蛙跳法(Random Frog Algorithm) 随机蛙跳法则提供了一个新颖的角度来进行高效而精准的波段选取工作。整个流程围绕着一系列迭代实验展开,每一次循环都会记录下哪些特定位置上的反射率值被频繁选用;随着次数增加,那些拥有较高频率出现的位置便被认为是更为重要的特征所在之处。这些选定出来的波段随后会被用于建立偏最小二乘回归(Partial Least Squares Regression)模型,并据此评价各自的重要性程度[^3]。 ```matlab function [importantBands] = randomFrog(spectraData, iterations) % spectraData - 输入的光谱数据 % iterations - 迭代次数 nBands = size(spectraData, 2); selectionProbabilities = zeros(1, nBands); for i = 1:iterations selectedIndices = randperm(nBands, round(sqrt(nBands))); selectionProbabilities(selectedIndices) = ... selectionProbabilities(selectedIndices) + 1; end importantBands = find(selectionProbabilities >= max(selectionProbabilities)*0.8); end ```
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值