支持向量机(SVM)是一种经典的有监督分类模型,它通过学习最优分类超平面将不同类别的样本分开。当面对高维小样本数据时,SVM能够很好地平衡模型复杂度和分类性能,是高光谱分类的常用方法。
在Python中,我们可以方便地使用Scikit-learn库实现SVM分类模型。以下Python代码展示了一个完整的高光谱SVM分类建模流程,主要步骤如下:
-
数据读取:使用Pandas库读取训练集和测试集数据,存储为DataFrame格式。其中每行对应一个样本,列表示不同的光谱波段,最后一列为类别标签。
-
数据划分:将DataFrame划分为特征X和标签y两部分,X为样本的光谱特征向量,y为对应的类别标签。
-
模型训练:创建SVM分类器,使用RBF核函数进行非线性映射。通过网格搜索选择最优的惩罚系数C和核函数参数gamma,提高分类性能。使用训练集数据拟合模型。
-
模型评估:使用训练好的模型对训练集和测试集进行预测,计算分类准确率,评估模型性能。
-
结果分析:绘制混淆矩阵,直观展现不同类别的分类情况,分析模型的优势和局限性。
高光谱数据集分为训练集和测试集两个csv文件导入(代码最后一行),其中,csv文件中,第一行为高光谱波段,最后一列为分类标签。
import pandas as pd
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
# 读取数据
def load_data(tr