传统的图像修复方法摘要

Image Inpainting

修复是一种以无法检测到的形式修改图像的技术,与艺术本身一样古老。从修复受损的绘画和照片到移除/替换选定的对象,修复的目标和应用是多种多样的。在本文中,我们介绍了一种用于静止图像数字修复的新颖算法,该算法试图复制专业修复师使用的基本技术。用户选择要还原的区域后,该算法会自动在这些区域中填充周围的信息。填写的方式是,到达区域边界的等渗线在内部完成。与以前的方法相反,此处介绍的技术不需要用户指定新颖信息的来源。这是自动完成的(并且速度很快),从而允许同时填充包含完全不同的结构和周围背景的众多区域。另外,对要修补的区域的拓扑没有限制。该技术的应用包括恢复旧照片和损坏的胶片;以及 删除日期,字幕或宣传等叠加文字;并从图像中去除整个对象,例如麦克风或电线,具有特殊效果。删除日期,字幕或宣传等叠加文字;并从图像中去除整个对象,例如麦克风或电线,具有特殊效果。删除日期,字幕或宣传等叠加文字;并从图像中去除整个对象,例如麦克风或电线,具有特殊效果。

Simultaneous structure and texture image inpainting

提出了一种在缺失图像信息区域同时填充纹理和结构的算法。基本思想是首先将图像分解为具有不同基本特征的两个函数的总和,然后使用结构和纹理填充算法分别重构每个函数。分解中使用的第一个函数是有界变化,表示基础图像结构,而第二个函数则捕获纹理和可能的噪声。使用图像修复算法重建有界变化图像中丢失信息的区域,同时使用纹理合成技术填充纹理图像中的相同区域。然后重建原始图像,并添加这两个子图像。然后,本文的新颖贡献在于将这三个先前开发的组件结合在一起,将图像分解与修补和纹理合成结合在一起,从而可以同时使用适合于不同图像特征的填充算法。真实图像上的示例显示了该提议方法的优势。

Region filling and object removal by exemplar-based image inpainting

提出了一种从数字图像中去除大物体的新算法。挑战在于以视觉上合理的方式填充遗留的孔。过去,此问题已通过两类算法解决:1)“纹理合成”算法,用于根据样本纹理生成较大的图像区域; 2)“修补”技术,用于填充较小的图像间隙。前者已被证明具有“纹理”的特征,即具有一定随机性的重复二维图案。后者专注于线性“结构”,可以将其视为一维模式,例如线条和对象轮廓。本文提出了一种新颖有效的算法,结合了这两种方法的优点。我们首先注意到,基于示例的纹理合成包含复制纹理和结构所需的基本过程。但是,结构扩展的成功与否很大程度上取决于填充的顺序。我们提出了一种最佳优先算法,其中以类似于修复中信息传播的方式传播合成像素值的置信度。使用基于示例的综合来计算实际颜色值。在本文中,纹理和结构信息的同时传播是通过一个有效的算法实现的。通过基于块的采样过程可实现计算效率。真实和合成图像上的许多示例证明了我们的算法在去除较大的遮挡物以及细小的划痕方面的有效性。还展示了相对于手动选择的目标区域的形状的稳健性。我们的结果与通过现有技术获得的结果相比具有优势。

Image completion with structure propagation

描述了具有结构传播的图像完成。一方面,自动生成输入图像中未知区域的合成补丁。基于来自一个或多个曲线的信息,从输入图像中的已知区域生成合成斑块。产生一条或多条曲线以向未知区域提供缺失的结构。结构被合成的补丁传播到未知区域。

Image completion using planar structure guidance

我们提出了一种使用中级结构提示自动指导基于补丁的图像完成的方法。我们的方法首先估计平面投影参数,将已知区域柔和地分割成多个平面,然后发现这些平面内的平移规律性。然后,通过定义补丁偏移和转换的先验概率,将该信息转换为低级完成算法的软约束。我们的方法处理多个平面,并且在没有任何检测到的平面的情况下,会退回到基线正平行图像完成算法。我们通过与各种场景的最新算法进行广泛的比较来验证我们的技术。

PatchMatch: A randomized correspondence algorithm for structural image editing

本文介绍了一种使用新的随机算法的交互式图像编辑工具,可以快速找到图像块之间的近似最近邻匹配。以前在图形和视觉方面的研究已经利用这种最近邻搜索来提供各种高级数字图像编辑工具。然而,为整个图像计算这样的匹配的场的成本已经避免了先前提供交互性能的努力。我们的算法与以前的技术水平(20-100x)相比,提供了实质性的性能改进,使其可以在交互式编辑工具中使用。驱动该算法的关键见解是可以通过随机采样找到一些良好的补丁匹配,并且图像中的自然相干性使我们能够将此类匹配快速传播到周围区域。我们提供了该算法的收敛特性的理论分析,以及其高质量和高性能的经验和实践证据。这个简单的算法构成了多种工具的基础-图像重新定向,完成和重新组合-可以在高级图像编辑应用程序的上下文中一起使用。最后,我们在合成过程中提出了其他直观的约束条件,这些约束条件为用户提供了以前方法无法提供的控制水平。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值