目录
前言
计算机视觉在很大程度上依赖于正确检测、定位和匹配局部特征的能力,但基于梯度的处理对照明变化非常敏感,并且不能精确或一致地定位。因此,需要一个对光照和尺度最大不变的特征算子。Morrone和Owens于1987年提出了基于局部能量特征的检测方法,为解决该问题提供了新思路,即用相位一致性检测特征。P. Kovesi于1995年对该方法做出了改进,克服了噪声等问题,使该方法的应用得以保证。近期阅读有关结构光光条中心提取的论文,发现可以利用相位一致性处理图像,提高中心坐标提取的鲁棒性,因此写下这篇文章,希望可以帮助读者理解相位一致性。文章中配图皆来自参考文献。
1.从局部能量函数到相位一致性
A.V. Oppenheim等人在1981年的论文中指出,在信号的傅立叶表示中,频谱幅度和相位往往扮演不同的角色,并且在某些情况下,如果仅保留相位,信号的许多重要特征就会得到保留。

上图说明,仅保留相位的图像(而非仅幅度图像)保留了原始图像的许多特征。这为之后的工作提供了一个方向。
Morrone和Owens在1987年的论文中认为,在图像中傅里叶分量最大相位的点处可以感知特征,傅里叶分量在方波的阶跃点以及三角波的波峰和波谷处都是同相的,并且该性质在尺度上是稳定的。

下式为信号的傅里叶级数,其中Φ是相位偏移,定义了特征处相位一致性出现的角度,p是描述序列中振幅随频率衰减速率的指数。
相位在任何角度的一致性都会产生一个特征,通过改变相位偏移,可以获得从阶跃到直线的连续特征类型。锐度由振幅衰减控制。

在此基础上,Morrone和Owens等人提出了相位一致性的概念,一维情况下,位置X的相位一致性为:
其中,表示第n个傅里叶分量的幅值,
表示第n个傅里叶分量的相位角,使等式最大化的
是所考虑点处所有傅里叶项的振幅加权平均局部相位角。
相位一致性的大小度量了特征的显著程度,1表示特征非常显著,0表示无显著性。因此,找到相位一致性为最大值的位置近似等于找到局部相位角相对于加权平均局部相位的加权方差为最小值的位置。相位一致性是一个很难计算的量,作为替代方案,Venkatesh和Owens在1989年的论文中表示,通过找到局部能量函数中的峰值,可以等效地计算出最大相位一致性点。他们认为,局部能量函数与相位一致性函数成正比,因此局部能量中的峰值将对应于相位一致性中的峰值,即:
从头到尾绘制位置x处局部傅里叶分量的极坐标图,则局部能量模型的几何表示如下图所示。

可以看出,在几何意义下,相位一致性是与局部傅里叶分量到达终点时所采用的总路径长度之比。因此,可以清楚地看到相位一致性的程度与信号的总体幅度无关,这说明了该算子拥有良好的鲁棒性。
虽然使用局部能量函数查找相位一致性中的峰值在计算上很方便,但它不提供特征显著性的无量纲度量,因为它是由具有单位流明的傅里叶分量振幅之和加权的。
2.Log-Gabor滤波器的基本概念
在开始本文内容之前,需要了解小波变换的基本概念,这里推荐一个链接,有需要的读者可以学习下。
在这里,小波变换用于获得信号中某一点的局部频率信息。我们感兴趣的是计算局部频率,特别是信号中的相位信息。为了保存相位信息,必须使用线性相位滤波器。也就是说,我们必须使用对称/反对称正交对中的非正交小波。这里,Kovesi使用了Log-Gabor滤波器。
首先,我们需要简单理解Gabor在1946年提出的信息理论。下图为Gabor提出的信息图,假设了一个由 18 个像素组成的简单一维图案,图像中所有信息都由 18 个像素的幅度表示,每个矩形表示了像素在空间中局部化但在频率上扩展(即宽带)的函数。在此基础上,图像经傅里叶变换后的所有信息都由 18 个独立系数(即 9 个正弦函数和 9 个余弦函数的幅度)表示,这些函数中的每一个都在频率上局部化,但在空间上扩展,如图(b)所示。Gabor 的理论表明,人们可以根据空间和频率中局部化的函数的振幅来表示信息,如下图中(c)(d)所示,此类函数也由矩形表示,其中函数的数量(独立系数)是恒定的,且每个矩形的面积是恒定的。因此,如果函数在空间上很大,那么它在频率上就很小,反之亦然。如图(d)所示,这些函数不需要在空间或频率上都具有相同的大小,其中低频函数在空间上相对较大而在频率上较小。基于以上理论所提出的函数被称为Gabor函数。Gabor函数的具体形式这里不做说明,只要知道采用了高斯函数的波形即可。

在Field的文章中,每个矩形被称为一个传感器,一行矩形是一个信道(调谐到相同空间频率的传感器空间阵列将被称为信道),在此基础上提出了Log-Gabor函数。

Log-Gabor函数的频率响应在对数频率轴上呈高斯分布。Log-Gabor函数的优点是,允许构造任意带宽的滤波器,同时在偶数对称滤波器中保持零DC分量。因此选用该滤波器与信号进行卷积来计算相位一致性。

3. 1D相位一致性的优化
考虑到实际的应用问题,进行如下改进:
1.如果所有傅里叶振幅都非常小,则相位一致性变为病态的问题可以通过在相位一致性表达式的分母上添加一个小的正常数ε来解决。
2.直接计算的相位一致性对噪声很敏感,因此选择计算局部能量而不是相位一致性。如果我们先从局部能量中减去估计的噪声效应,然后再将其归一化为小波响应振幅之和,我们将消除对噪声的杂散响应。在上图中可以看到,噪声圆半径T为平均噪声响应。
3.相位一致性点只有在频率范围很宽的情况下才有意义,过滤器响应的分布在一般意义上不应该太窄。更常见的情况是特征经过高斯平滑,减少了信号中的高频分量并减小了频率扩展。在极端情况下,频率扩展减少得太多,以至于我们在局部出现接近纯正弦函数的情况。也就是说,面临的困难是没有一个理想的滤波器响应分布。为了解决这个问题,可以在相位一致性的计算中加入低频分量。我们可以构造一个加权函数,在滤波器响应的扩展较窄的位置降低相位一致性的值。Kovesi通过对滤波器响应扩展值应用sigmoid函数来构造相位一致性加权函数W(x)。通过频率扩展进行加权,以及在频率扩展较低的情况下减少杂散响应,还有助于锐化特征的本地化,尤其是那些已经平滑的特征。
4.即使增加了频率扩展加权,模糊特征上相位一致性的局部化仍然很差。Kovesi指出,在相位一致性点处,相位偏差的余弦应较大,而相位偏差的正弦绝对值应较小,可以据此来构造一个更灵敏的相位一致性度量。
经过以上改进,相位一致性的计算可以用如下公式来表示:
其中符号W(x)是滤波器频率扩展的权重函数,以最大限度地提高计算精度。ε是一个小常数,以避免除数为0。T是噪音强度,只有大于噪声功率的能量值才会计入结果(式中中括号的意义为:当中括号的值为正时,表示括号内的值等于自身,否则等于零)。
4. 2D相位一致性
考虑到一维情况,通过在多个方向上应用一维分析并以某种方式组合结果来分析二维图像。必须解决三个问题:二维过滤器的形状、要分析的方向数以及每个方向结果的组合方式。由于篇幅限制,这里只说明基本的思路,即在图像中的每个位置,我们计算每个方向上的能量E(x),补偿噪声的影响,对频率扩展应用加权,然后形成所有方向上的总和。然后,通过除以图像中该位置处各个小波响应振幅的所有方向和尺度上的总和,对能量总和进行归一化。2D相位一致性的计算公式如下:
其中o表示方向上的指数。
参考文献
[1]A. V. Oppenheim and J. S. Lim, "The importance of phase in signals," in Proceedings of the IEEE, vol. 69, no. 5, pp. 529-541, May 1981, doi: 10.1109/PROC.1981.12022.
[2]M. C. Morrone and R. A. Owens. Feature detection from local energy .Pattern Recognition Letters, 6:303–313, 1987.
[3]Venkatesh, S. and Owens, R. 1989, An energy feature detection scheme, in ICIP '89 : IEEE International Conference on Image Processing : conference proceedings, 5-8 September 1989, Singapore, IEEE, [Singapore, Singapore].
[4]Kovesi, P.. “Image Features from Phase Congruency Image Features from Phase Congruency.” (1995).
[5]D. Gabor, “Theory of communication,”J. Inst. Electr. Eng. 93, 429–457 (1946).
[6]David J. Field, "Relations between the statistics of natural images and the response properties of cortical cells," J. Opt. Soc. Am. A 4, 2379-2394 (1987)