在pytorch中已经包含了许多的内置数据集,我们可以很简单的调用其内置的,但是在现实的过程之中我们往往会使用自己的数据集。这就使得读取自己的数据集并进行训练会有很大的问题。
因此对于csv格式的数据集合,以下图为例
每一份csv文件为一个样本,对应的标签数据也是使用csv格式进行存储。
对于这种情况,我们可以使用重写dataset类来解决这个问题,利用迭代的方式依次读取对应的data和label。
代码如下:
class myDataSet(Dataset):
def __init__(self, data_dir, label_dir, transform=None):
"""
:param data_dir: 数据文件路径
:param label_dir: 标签文件路径
:param transform: transform操作
"""
self.transform = transform
# 读文件夹下每个数据文件名称
#os.listdir读取文件夹内的文件名称
self.file_name = os.listdir(data_dir)
# 读标签文件夹下的数据名称
self.label_name = os.listdir(label_dir)
self.data_path = []
self.label_path = []
#让每一个文件的路径拼接起来
for index in range(len(self.file_name)):
self.data_path.append(os.path.join(data_dir,self.file_name[index]))
self.label_path.append(os.path.join(label_dir, self.label_name[index]))
def __len__(self):
# 返回数据集长度
return len(self.file_name)
def __getitem__(self, index):
# 获取每一个数据
#读取数据
data = pd.read_csv(self.data_path[index],header=None)
#读取标签
label = pd.read_csv(self.label_path[index],header=None)
if self.transform :
data = self.transform(data)
label = self.transform(label)
#转成张量
data = torch.tensor(data.values)
label = torch.tensor(label.values)
return data, label # 返回数据和标签
重构dataset类之后,读取数据并使用dataloader进行数据的加载
data_dir = r"./data/Circle/BV/"
label_dir = r"./data/Circle/DDL/"
#读取数据集
train_dataset = myDataSet(
data_dir = data_dir,
label_dir = label_dir,
)
#加载数据集
train_iter = DataLoader(train_dataset)
成功加载数据集之后就可以构建自己的网络来进行训练。
ps:学生新手,如果有不足之处还希望大家多多批评指正。