【微积分】函数的极限

函数极限的定义

		下面是最经典的一种情形

lim ⁡ x → x 0 f ( x ) = A ⇔ ( ϵ − δ   L a n g u a g e )    ∀   ϵ > 0 , ∃   δ > 0 , s t   0 < ∣ x − x 0 ∣ < δ ⇒ ∣ f ( x ) − A ∣ < ϵ \lim_{x \to x_0}f(x) = A \Leftrightarrow (\epsilon-\delta \ Language) \ \ \forall \ \epsilon>0,\exists \ \delta> 0, st \ 0 < \left| x-x_0 \right| < \delta \Rightarrow \left| f(x)-A \right|< \epsilon xx0limf(x)=A(ϵδ Language)   ϵ>0 δ>0,st 0<xx0<δf(x)A<ϵ

		其他情形根据下面自行组合

1. 按照极限值来分

极限为 A    ( A ∈ R )   : A\ \ (A \in \R)\ : A  (AR) 

     lim ⁡ x → ∙ f ( x ) = A ⇔   ∀   ϵ > 0 , ∃   . . .   , s t   . . . ⇒ ∣ f ( x ) − A ∣ < ϵ \ \ \ \ \lim_{x \to \bullet }f(x) = A \Leftrightarrow \ \forall \ \epsilon>0,\exists\ ... \ , st \ ... \Rightarrow \left| f(x)-A \right|< \epsilon     xlimf(x)=A  ϵ>0, ... ,st ...f(x)A<ϵ
极限为 ∞   : \infin \ :  :
lim ⁡ x → ∙ f ( x ) = ∞ ⇔   ∀   M > 0 , ∃   . . .   , s t   . . . ⇒ ∣ f ( x ) ∣ > M \lim_{x \to \bullet }f(x) = \infin \Leftrightarrow \ \forall \ M>0,\exists\ ... \ , st \ ... \Rightarrow \left| f(x) \right|> M xlimf(x)=  M>0, ... ,st ...f(x)>M

极限为 − ∞   : -\infin \ :  :

lim ⁡ x → ∙ f ( x ) = − ∞ ⇔   ∀   M > 0 , ∃   . . .   , s t   . . . ⇒ f ( x ) < − M \lim_{x \to \bullet }f(x) = -\infin \Leftrightarrow \ \forall \ M>0,\exists\ ... \ , st \ ... \Rightarrow f(x)< -M xlimf(x)=  M>0, ... ,st ...f(x)<M

极限为 + ∞   : +\infin \ : + : lim ⁡ x → ∙ f ( x ) = + ∞ ⇔   ∀   M > 0 , ∃   . . .   , s t   . . . ⇒ f ( x ) > M \lim_{x \to \bullet }f(x) = +\infin \Leftrightarrow \ \forall \ M>0,\exists\ ... \ , st \ ... \Rightarrow f(x)> M xlimf(x)=+  M>0, ... ,st ...f(x)>M

2. 按照趋向来分

  • x → x 0    ( x 0 ∈ R )   : ∃   δ > 0 ,   0 < ∣ x − x 0 ∣ < δ x \to x_0\ \ ( x_0 \in \R)\ :\exist \ \delta>0,\ 0 < \left| x-x_0 \right| <\delta xx0  (x0R)  δ>0, 0<xx0<δ

  • x → x 0 −    ( x 0 ∈ R )   : ∃   δ > 0 ,   x 0 − δ < x < x 0 x \to x_0^-\ \ ( x_0 \in \R)\ :\exist \ \delta>0,\ x_0-\delta < x <x_0 xx0  (x0R)  δ>0, x0δ<x<x0

  • x → x 0 +    ( x 0 ∈ R )   : ∃   δ > 0 ,   x 0 < x < x 0 + δ x \to x_0^+ \ \ ( x_0 \in \R)\ :\exist \ \delta>0,\ x_0< x <x_0 + \delta xx0+  (x0R)  δ>0, x0<x<x0+δ

  • x → ∞ : ∃   X > 0 ,   ∣ x ∣ > X x \to \infin: \exists \ X>0,\ \left| x \right| > X x: X>0, x>X

  • x → − ∞ : ∃   X > 0 ,   x < − X x \to -\infin: \exists \ X>0,\ x < -X x: X>0, x<X

  • x → + ∞ : ∃   X > 0 ,   x > X x \to +\infin: \exists \ X>0,\ x > X x+: X>0, x>X

    实际上,所谓 “趋向”应该是由任取xxx,存在xxx,这一套谓词逻辑组合起来的,此处只是为了方便记忆,方便填写。

使用定义证明函数极限的经典技术

 1. 利用 极限存在 等价于 左右极限相等。往往用于讨论分段函数的分段点

 2. 利用所给条件,结合一些构造,利用全称量词和存在量词。具体方法和例题见下。	  
  1. 已知两个极限,得 X 1 X_1 X1 X 2 X_2 X2 ,取 X = f ( X 1 , X 2 ) X = f(X_1,X_2) X=f(X1,X2) 证明存在满足条件的 X X X

在这里插入图片描述
在这里插入图片描述

  1. 已知两个极限 A A A B B B,要证明某极限不存在时,我们构造一个特殊的 ϵ = f ( A , B ) \epsilon = f(A,B) ϵ=f(A,B),使其和该极限存在之间矛盾,这样便证明不存在(因为极限的定义中要求 ∀ ϵ \forall \epsilon ϵ )。极限唯一性的证明就是一个很好的例子。
    在这里插入图片描述

函数极限的性质

若在某个趋向下, f ( x ) f(x) f(x) 的极限存在,则

  • 唯一性:极限值必唯一
  • 局部有界性:保证在某去心邻域内 f ( x ) f(x) f(x) 有界
  • 局部保号性:保证在某去心邻域内 f ( x ) f(x) f(x) 的符号与极限值的符号一致

函数极限的计算(重点)

  1. 七种未定型的转化

    全部往0/0型或∞/∞型上转化,转化方法如下
    
    1. 0·∞型:直接将简单部分下放到分母
    2. ∞-∞型:若为两分式相减,直接通分后合并;若没有分母,则取倒代换创造分母
    3. 0^∞型、∞^0型、1^∞型:转化成以e为底的形式,极限符号直接提到指数部分上。
    *对于1^∞型,若原极限的底数复杂,利用以下等价无穷小进行简化:
    					 ln(u) ~ u-1 (u->1)
    
  2. 常用工具

    洛必达法则(慎用)、等价无穷小替换、泰勒公式、夹逼准则
    
  3. 计算要领

    1. 某乘积项的极限值为常数,立即将常数从极限运算中提出来。
    
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值