多元函数极限求法(二元函数)

  • 夹逼准则
    例一:求极限 lim ⁡ x → 0 y → 0 sin ⁡ ( x 2 y + y 4 ) x 2 + y 2 \lim \limits_{x \rightarrow 0 \atop y \rightarrow 0} \frac{\sin \left(x^{2} y+y^{4}\right)}{x^{2}+y^{2}} y0x0limx2+y2sin(x2y+y4)

解析:因为 ∣ sin ⁡ x ∣ ≤ ∣ x ∣ |\sin x| \leq|x| sinxx,因为有
0 ≤ ∣ sin ⁡ ( x 2 y + y 4 ) x 2 + y 2 ∣ ≤ ∣ x 2 y + y 4 x 2 + y 2 ∣ 0 \leq\left|\frac{\sin \left(x^{2} y+y^{4}\right)}{x^{2}+y^{2}}\right| \leq\left|\frac{x^{2} y+y^{4}}{x^{2}+y^{2}}\right| 0x2+y2sin(x2y+y4)x2+y2x2y+y4
又因为
∣ x 2 y + y 4 x 2 + y 2 ∣ ≤ x 2 x 2 + y 2 × ∣ y ∣ + y 2 x 2 + y 2 × y 2 ≤ ∣ y ∣ + y 2 → 0 \begin{aligned} \left|\frac{x^{2} y+y^{4}}{x^{2}+y^{2}}\right| & \leq \frac{x^{2}}{x^{2}+y^{2}} \times|y|+\frac{y^{2}}{x^{2}+y^{2}} \times y^{2} \\ & \leq|y|+y^{2} \rightarrow 0 \end{aligned} x2+y2x2y+y4x2+y2x2×y+x2+y2y2×y2y+y20
由夹逼准则知,极限为0

例2:求极限 lim ⁡ x → + ∞ y → + ∞ ( x y x 2 + y 2 ) x 2 \lim \limits_{x \rightarrow+\infty \atop y \rightarrow+\infty}\left(\frac{x y}{x^{2}+y^{2}}\right)^{x^{2}} y+x+lim(x2+y2xy)x2
解析:注意到
0 ≤ x y x 2 + y 2 ≤ 1 2 ( x 2 + y 2 ) x 2 + y 2 = 1 2 0 \leq \frac{x y}{x^{2}+y^{2}} \leq \frac{\frac{1}{2}\left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}=\frac{1}{2} 0x2+y2xyx2+y221(x2+y2)=21
所以
0 ≤ ( x y x 2 + y 2 ) x 2 ≤ ( 1 2 ) x 2 → 0 0 \leq\left(\frac{x y}{x^{2}+y^{2}}\right)^{x^{2}} \leq\left(\frac{1}{2}\right)^{x^{2}} \rightarrow 0 0(x2+y2xy)x2(21)x20
由夹逼准则知极限为0

例三 求极限 lim ⁡ x → ∞ y → ∞ x + y x 2 − x y + y 2 \lim \limits_{x \rightarrow \infty \atop y \rightarrow \infty} \frac{x+y}{x^{2}-x y+y^{2}} yxlimx2xy+y2x+y

解法一:由于
∣ x + y x 2 − x y + y 2 ∣ ≤ ∣ 1 y + 1 x ∣ ∣ x y − 1 + y x ∣ ≤ ∣ 1 y + 1 x ∣ ∣ x y + y x ∣ − 1 ≤ ∣ 1 y + 1 x ∣ → 0 \left|\frac{x+y}{x^{2}-x y+y^{2}}\right| \leq \frac{\left|\frac{1}{y}+\frac{1}{x}\right|}{\left|\frac{x}{y}-1+\frac{y}{x}\right|} \leq \frac{\left|\frac{1}{y}+\frac{1}{x}\right|}{\left|\frac{x}{y}+\frac{y}{x}\right|-1} \leq\left|\frac{1}{y}+\frac{1}{x}\right| \rightarrow 0 x2xy+y2x+yyx1+xyy1+x1yx+xy1y1+x1y1+x10

解法二:由于
∣ x + y x 2 − x y + y 2 ∣ ≤ 2 ∣ x + y ∣ x 2 + y 2 ≤ 2 ∣ x ∣ + ∣ y ∣ x 2 + y 2 ≤ 2 ( 1 ∣ x ∣ + 1 ∣ y ∣ ) → 0 \left|\frac{x+y}{x^{2}-x y+y^{2}}\right| \leq \frac{2|x+y|}{x^{2}+y^{2}} \leq 2 \frac{|x|+|y|}{x^{2}+y^{2}} \leq 2\left(\frac{1}{|x|}+\frac{1}{|y|}\right) \rightarrow 0 x2xy+y2x+yx2+y22x+y2x2+y2x+y2(x1+y1)0
故由夹逼准则知极限为0

解法三
注意到 x 2 + y 2 − x y ≥ 2 x y − x y = x y x^{2}+y^{2}-x y \geq 2 x y-x y=x y x2+y2xy2xyxy=xy
由于
∣ x + y x 2 − x y + y 2 ∣ ≤ ∣ x + y x y ∣ ≤ ( 1 ∣ y ∣ + 1 ∣ x ∣ ) → 0 \left|\frac{x+y}{x^{2}-x y+y^{2}}\right| \leq\left|\frac{x+y}{x y}\right| \leq\left(\frac{1}{|y|}+\frac{1}{|x|}\right) \rightarrow 0 x2xy+y2x+yxyx+y(y1+x1)0
所以极限为0

  • 极坐标

例题一:求极限 lim ⁡ ( x , y ) → ( 0 , 0 ) x 3 + y 3 x 2 + y 2 \lim \limits_{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}} (x,y)(0,0)limx2+y2x3+y3
解析
x = ρ cos ⁡ θ , y = ρ sin ⁡ θ x=\rho \cos \theta, y=\rho \sin \theta x=ρcosθ,y=ρsinθ,则
lim ⁡ ( x , y ) → ( 0 , 0 ) x 3 + y 3 x 2 + y 2 = lim ⁡ ρ → 0 ρ 3 ( cos ⁡ 3 θ + sin ⁡ 3 θ ) ρ 2 = lim ⁡ ρ → 0 ρ ( cos ⁡ 3 θ + sin ⁡ 3 θ ) = 0 \lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}=\lim _{\rho \rightarrow 0} \frac{\rho^{3}\left(\cos ^{3} \theta+\sin ^{3} \theta\right)}{\rho^{2}}=\lim _{\rho \rightarrow 0} \rho\left(\cos ^{3} \theta+\sin ^{3} \theta\right)=0 (x,y)(0,0)limx2+y2x3+y3=ρ0limρ2ρ3(cos3θ+sin3θ)=ρ0limρ(cos3θ+sin3θ)=0

  • 化为一元函数

例题一:求极限 lim ⁡ x → + ∞ y → + ∞ ( x 2 + y 2 ) e − ( x + y ) \lim \limits_{x \rightarrow+\infty \atop y \rightarrow+\infty}\left(x^{2}+y^{2}\right) e^{-(x+y)} y+x+lim(x2+y2)e(x+y)

由于 0 < ( x 2 + y 2 ) e x + y = x 2 e x + y + y 2 e x + y ≤ x 2 e x + y 2 e y 0<\frac{\left(x^{2}+y^{2}\right)}{e^{x+y}}=\frac{x^{2}}{e^{x+y}}+\frac{y^{2}}{e^{x+y}} \leq \frac{x^{2}}{e^{x}}+\frac{y^{2}}{e^{y}} 0<ex+y(x2+y2)=ex+yx2+ex+yy2exx2+eyy2
易知 x 2 e x 、 y 2 e y \frac{x^{2}}{e^{x}}、\frac{y^{2}}{e^{y}} exx2eyy2都为0,所以极限为0

例题二:求极限 lim ⁡ ( x , y ) → ( 0 , 0 ) x 2 ln ⁡ ( x 2 + y 2 ) = 0 \lim \limits_{(x, y) \rightarrow(0,0)} x^{2} \ln \left(x^{2}+y^{2}\right)=0 (x,y)(0,0)limx2ln(x2+y2)=0
解析:因为
lim ⁡ ( x , y ) → ( 0 , 0 ) x 2 ln ⁡ ( x 2 + y 2 ) = lim ⁡ ( x , y ) → ( 0 , 0 ) x 2 x 2 + y 2 ( x 2 + y 2 ) ln ⁡ ( x 2 + y 2 ) \lim \limits_{(x, y) \rightarrow(0,0)} x^{2} \ln \left(x^{2}+y^{2}\right)=\lim \limits_{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}}\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right) (x,y)(0,0)limx2ln(x2+y2)=(x,y)(0,0)limx2+y2x2(x2+y2)ln(x2+y2)
x 2 + y 2 = t \sqrt{x^{2}+y^{2}}=t x2+y2 =t
则有
lim ⁡ ( x , y ) → ( 0 , 0 ) ( x 2 + y 2 ) ln ⁡ ( x 2 + y 2 ) = lim ⁡ t → 0 + t ln ⁡ t = lim ⁡ t → 0 + ln ⁡ t 1 / t = lim ⁡ t → 0 + 1 / t − 1 / t 2 = 0 \begin{aligned} \lim _{(x, y) \rightarrow(0,0)}\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right) &=\lim _{t \rightarrow 0^{+}} t \ln t \\ &=\lim _{t \rightarrow 0^{+}} \frac{\ln t}{1 / t}=\lim _{t \rightarrow 0^{+}} \frac{1 / t}{-1 / t^{2}}=0 \end{aligned} (x,y)(0,0)lim(x2+y2)ln(x2+y2)=t0+limtlnt=t0+lim1/tlnt=t0+lim1/t21/t=0

例题三:求极限 lim ⁡ ( x , y ) → ( 0 , 0 ) x ln ⁡ ( x 2 + y 2 ) \lim \limits_{(x, y) \rightarrow(0,0)} x \ln \left(x^{2}+y^{2}\right) (x,y)(0,0)limxln(x2+y2)
解析:因为
lim ⁡ x → 0 y → 0 x ln ⁡ ( x 2 + y 2 ) = 2 lim ⁡ x → 0 y → 0 x x 2 + y 2 x 2 + y 2 ln ⁡ x 2 + y 2 \lim \limits_{x \rightarrow 0 \atop y \rightarrow 0} x \ln \left(x^{2}+y^{2}\right)=2 \lim \limits_{x \rightarrow 0 \atop y \rightarrow 0} \frac{x}{\sqrt{x^{2}+y^{2}}} \sqrt{x^{2}+y^{2}} \ln \sqrt{x^{2}+y^{2}} y0x0limxln(x2+y2)=2y0x0limx2+y2 xx2+y2 lnx2+y2
x 2 + y 2 = t \sqrt{x^{2}+y^{2}}=t x2+y2 =t,那么
lim ⁡ ( x , y ) → ( 0 , 0 ) x 2 + y 2 ln ⁡ x 2 + y 2 = lim ⁡ t → 0 + t ln ⁡ t = lim ⁡ t → 0 + ln ⁡ t 1 / t = lim ⁡ t → 0 + 1 / t − 1 / t 2 = 0 \begin{aligned} \lim _{(x, y) \rightarrow(0,0)} \sqrt{x^{2}+y^{2}} \ln \sqrt{x^{2}+y^{2}} &=\lim _{t \rightarrow 0^{+}} t \ln t \\ &=\lim _{t \rightarrow 0^{+}} \frac{\ln t}{1 / t}=\lim _{t \rightarrow 0^{+}} \frac{1 / t}{-1 / t^{2}}=0 \end{aligned} (x,y)(0,0)limx2+y2 lnx2+y2 =t0+limtlnt=t0+lim1/tlnt=t0+lim1/t21/t=0
所以 lim ⁡ ( x , y ) → ( 0 , 0 ) x ln ⁡ ( x 2 + y 2 ) = 0 \lim \limits_{(x, y) \rightarrow(0,0)} x \ln \left(x^{2}+y^{2}\right)=0 (x,y)(0,0)limxln(x2+y2)=0

例题四:求极限 lim ⁡ ( x , y ) → ( 0 , 0 ) x 2 + y 2 − sin ⁡ x 2 + y 2 ( x 2 + y 2 ) 3 / 2 \lim \limits_{(x, y) \rightarrow(0,0)} \frac{\sqrt{x^{2}+y^{2}}-\sin \sqrt{x^{2}+y^{2}}}{\left(x^{2}+y^{2}\right)^{3 / 2}} (x,y)(0,0)lim(x2+y2)3/2x2+y2 sinx2+y2

解析
lim ⁡ ( x , y ) → ( 0 , 0 ) x 2 + y 2 − sin ⁡ x 2 + y 2 ( x 2 + y 2 ) 3 / 2 x 2 + y 2 = ρ ρ → 0 ρ − sin ⁡ ρ ρ 3 = lim ⁡ ρ → 0 ρ − ( ρ − 1 6 ρ 3 + o ( ρ 3 ) ) ρ 3 = 1 6 \begin{aligned} \lim _{(x, y) \rightarrow(0,0)} \frac{\sqrt{x^{2}+y^{2}}-\sin \sqrt{x^{2}+y^{2}}}{\left(x^{2}+y^{2}\right)^{3 / 2}} & \frac{\sqrt{x^{2}+y^{2}}=\rho}{\rho \rightarrow 0} \frac{\rho-\sin \rho}{\rho^{3}} \\ &=\lim _{\rho \rightarrow 0} \frac{\rho-\left(\rho-\frac{1}{6} \rho^{3}+o\left(\rho^{3}\right)\right)}{\rho^{3}}=\frac{1}{6} \end{aligned} (x,y)(0,0)lim(x2+y2)3/2x2+y2 sinx2+y2 ρ0x2+y2 =ρρ3ρsinρ=ρ0limρ3ρ(ρ61ρ3+o(ρ3))=61

  • 8
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值