微积分下基础题型

目录

偏导

多元函数求偏导

求多元函数的二阶偏导

求多元复合函数的偏导

求多元隐函数的偏导

多元函数的全微分

多元复合函数的全微分

已知全微分,求未知数

多元函数求极值

多元隐函数求极值

多元函数求最值

四个小知识点

空间向量

求向量的长度

求向量的点乘

求向量之间的夹角

求一个向量在另一个向量方向上的投影

向量垂直

向量平行

空间几何(上)

求过三点的平面方程

判断面与面、面与向量的关系

已知面过一点和其法向量,求面

求点到面的距离

求两个面的交线方程

线与线、线与面的关系

已知线过一点和其方向向量,求线

求点到线的距离

求x=x(t)  y=y(t)  z=z(t)形式的曲线在某点处的切线和法平面

求x、y、z写在一起的曲线在某点处的切线与法平面

求曲面在某点处的切平面与法线

二重积分

计算形式的二重积分

交换积分次序

计算格式的二重积分

积分区域与圆有关的二重积分

积分区域对称的二重积分

三重积分

 第一类曲线积分

函数在圆上的积分

函数在y=y(x)上的积分

利用性质计算

第二类曲线积分

两个函数在圆上的积分

两个函数在线上的积分

利用性质计算

第一类曲面积分

已知面z=z(x,y),计算某一个函数在这个面上的积分

已知面x=x(y,z),计算某一个函数在这个面上的积分

已知面y=y(x,z),计算某一个函数在这个面上的积分

函数在体的表面的积分

第二类曲面积分函数

在某一个曲面上关于dydz的积分

函数在某一个曲面上关于dxdy的积分

函数在某一个曲面上关于dxdz的积分

判断级数的敛散性

判断正项级数的敛散性

判断交错级数的敛散性

判断绝对收敛/条件收敛

 幂级数

已知幂级数在某点收敛/发散,判断其在另一点的敛散性

求幂级数的收敛域/收敛区间

求幂级数的收敛半径

求幂级数在收敛域内的和函数

展成幂级数


偏导

多元函数求偏导

是把下方的字母当未知数,其它字母当常数,对总函数求导

在(a,b,c)点的偏导=分别求xyz的偏导,将x=a,y=b,z=c代入求出的三个数

求多元函数的二阶偏导

先对分母的前一项求偏导,再对偏导结果在求偏导

偏导对象不变,偏导顺序不改变最终结果

求多元复合函数的偏导

把复杂部分设为u,v等    --->   套公式

一元函数用d,多元函数用\partial

栗子1

 栗子2

栗子2变式

求多元隐函数的偏导

无法提出z=。。。,则为多元隐函数

已知。。。=0

  1. 设F=。。。

  2. 分别求F对x,y,z的偏导

  3. 然后代公式,公式如下

例子1)求一阶偏导

例子2)求二阶偏导

z包含x,就不能把z当成常数

然后代入红黄框就OK了

全微分及偏导的应用

多元函数的全微分

全微分dZ,有几项就由未知数的个数决定

dZ=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy

例子1

例子2

多元复合函数的全微分

公式:dZ=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy

已知全微分,求未知数

公式dZ=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy

公式\frac{\partial ^2z}{\partial x\partial y}=\frac{\partial ^2z}{\partial y\partial x}

多元函数求极值

方法:

  1. 求出同时满足z对x的偏导=0和z对y的偏导=0的一对(x,y)

  2. A=\frac{\partial ^2z}{\partial x^2}     B=\frac{\partial ^2z}{\partial x\partial y}    C=\frac{\partial ^2z}{\partial y^2}  的 值

  3. B^2-AC<0    A<0极大值点  A>0极小值点

  4. B^2-AC=0不确定

  5. B^2-AC>0不是极值点

例子

多元隐函数求极值

方法:

  1. 求出同时满足     z对x的偏导=0     和     z对y的偏导=0   和   原方程    的一对(x,y,z)

  2. A=\frac{\partial ^2z}{\partial x^2}     B=\frac{\partial ^2z}{\partial x\partial y}    C=\frac{\partial ^2z}{\partial y^2}  的 值

  3. B^2-AC<0    A<0极大值点  A>0极小值点

  4. B^2-AC=0不确定

  5. B^2-AC>0不是极值点

例子

多元函数求最值

四个小知识点

空间向量

求向量的长度

求向量的点乘

例子1

例子2

求向量之间的夹角

公式:

例子:

求一个向量在另一个向量方向上的投影

公式:

例子:

向量垂直

若向量a和向量b垂直,则其点乘为0

例子

向量叉乘

若向量\vec{c}=\vec{a}\times \vec{b},则c与a垂直,c与b垂直,c与ab所在平面垂直

例子

向量平行

当向量a和向量b平行,\vec{a}\times \vec{b}=0,每一项成比例

空间几何(上)

求过三点的平面方程

Ax+By+Cz+D=0

判断面与面、面与向量的关系

公式

已知面过一点和其法向量,求面

例子

例子

求点到面的距离

求两个面的交线方程

线与线、线与面的关系

已知线过一点和其方向向量,求线

例子1

例子2

求点到线的距离

方法一

方法二

点线距可用叉乘来求

  1. 取直线上一点和直线外所求点构成向量
  2. 求出直线方向向量
  3. 两向量做叉乘,叉乘结果求长度后除以方向向量长度

求x=x(t)  y=y(t)  z=z(t)形式的曲线在某点处的切线和法平面

求x、y、z写在一起的曲线在某点处的切线与法平面

求曲面在某点处的切平面与法线

二重积分

计算\int dx\int dy形式的二重积分

  1. 把未知数集中到后边
  2. 计算后半部分积分
  3. 将计算结果代入前半部分中间

交换积分次序

例子1

例子2

例子3

计算\int \int d\sigma格式的二重积分

积分区域与圆有关的二重积分

x=rcos\theta   y=rsin\theta  dxdy=rd\theta dr

积分区域对称的二重积分

三重积分

方法

  • 第一步:结合表,表示出\Omega,并用z=?的形式表示出下表面与上表面
  • 下表面:从z坐标轴向上看的面
  • 上表面:从z坐标轴向上看的面
  • 第二步:求出\int_{down}^{up}f(x,y,z)dz,结果记为g(x,y)  
  • up     为  z上表面  
  • down为  z下表面
  • 第三步:求出\Omega在xoy面的投影D
  • 第四步:计算\int \int g(x,y)d\sigma

例子

 

 第一类曲线积分

函数在圆上的积分

L为曲线,f为函数

公式

例子

函数在y=y(x)上的积分

公式

例子

综合变式子

利用性质计算\int_{L}f(x,y)ds

例子

第二类曲线积分

两个函数在圆上的积分

公式

例子

两个函数在线上的积分

公式

例子1

例子2

利用性质计算\int _{L}P(x,y)dx+Q(x,y)dy

例子

变式

 

第一类曲面积分

已知面z=z(x,y),计算某一个函数在这个面上的积分

公式

做题步骤

①画出\sum,并表示出Dxy
②将\sum表示成z=?的形式,并求出f(x,y,z(x,y))
③求出\frac{\partial z}{\partial x}   \frac{\partial z}{\partial y}
④代入公式,求出答案

例题1

例题2

已知面x=x(y,z),计算某一个函数在这个面上的积分

公式

做题步骤

①画出\sum,并表示出Dyz
②将\sum表示成x=?的形式,并求出f(x(y,z),y,z)
③求出\frac{\partial x}{\partial y}   \frac{\partial x}{\partial z}
④代入公式,求出答案

例题

已知面y=y(x,z),计算某一个函数在这个面上的积分

公式

做题步骤

①画出\sum,并表示出Dxz
②将\sum表示成y=?的形式,并求出f(x,y(x,z),z)
③求出\frac{\partial y}{\partial x}   \frac{\partial y}{\partial z}
④代入公式,求出答案

例题

函数在体的表面的积分

第二类曲面积分函数

在某一个曲面上关于dydz的积分

公式

例题

例题

例题

函数在某一个曲面上关于dxdy的积分

公式

例题

函数在某一个曲面上关于dxdz的积分

公式

例题

判断级数的敛散性

判断正项级数的敛散性

正项级数:好多项相加,每一项都是正的,项项间有关系

公式:

进一步判断

例题

例题

例题

例题

例题

判断交错级数的敛散性

公式

例题

判断绝对收敛/条件收敛

公式

正项级数

  • 若级数发散,则发散;
  • 若级数收敛,则绝对收敛。

交错级数

  • 若级数发散,则发散;
  • 若级数收敛,则去掉(-1)的n次方项,变为正项级数:

交错级数变为正项级数

  • 正项级数收敛,则绝对收敛;
  • 正项级数发散,则条件收敛。

例题

例题

 

 幂级数

已知幂级数在某点收敛/发散,判断其在另一点的敛散性

公式

例题

例题

求幂级数的收敛域/收敛区间

公式

例题

例题

求幂级数的收敛半径

公式

例题

例题

求幂级数在收敛域内的和函数

公式

例题

例题

例题:乘x或乘x^2

例题:提1/x或1/(x^2)

例题:多个n  ->  多次求导或积分

公式

例题

展成幂级数

方法

例题

例题

例题

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值