Boyd 凸优化课后习题 求共轭函数

求下面问题的一系列共轭函数

(a) 最大值函数。函数 f ( x ) = max ⁡ i = 1 , … , n x i f(x)=\max_{i=1,\dots,n}x_i f(x)=maxi=1,,nxi,定义在 R n \mathbf{R}^n Rn上。
(b) 最大若干分量之和。函数 f ( x ) = ∑ i = 1 r x [ i ] f(x)=\sum_{i=1}^rx_{[i]} f(x)=i=1rx[i],定义在 R n \mathbf{R}^n Rn上。
(c) 定义在 R R R上的分片线性函数 f ( x ) = max ⁡ i = 1 , … , m ( a i x + b i ) f(x)=\max_{i=1,\dots,m}(a_ix+b_i) f(x)=maxi=1,,m(aix+bi)。在求解过程中,可以假设 a i a_i ai按升序排列, a 1 ≤ ⋯ ≤ a m a_1\le\dots\le a_m a1am,且每个函数 a i x + b i a_ix+b_i aix+bi都不是冗余的,即任选 k k k,至少存在一点 x x x使得 f ( x ) = a k x + b k f(x)=a_kx+b_k f(x)=akx+bk

解:
(a)最大值函数的共轭函数写作:
f ∗ ( y ) = sup ⁡ x { y T x − max ⁡ x } f^*(y)=\sup_x\{y^Tx-\max x\} f(y)=xsup{yTxmaxx}

  1. 首先,如果 y y y的分量中存在负值,那么与该分量对应相乘的 x x x分量取负无穷大时,显然是没有上界的,所以至少 y ⪰ 0 y\succeq 0 y0
  2. 其次,如果 y y y向量中存在某个大于1的的分量,那么当该分量对应的 x i x_i xi趋近于无穷大时,函数没有上界。
  3. 然后在 0 ⪯ y ⪯ 1 0\preceq y\preceq 1 0y1的基础上考虑问题,不失一般性,我们可以假设 x ∈ R n x\in\mathbf{R}^n xRn的各分量按从大到小排序:
    x 1 ≥ x 2 ≥ ⋯ ≥ x n x_1\ge x_2\ge\dots\ge x_n x1x2xn
    则共轭函数可以去掉最大值符号,
    f ∗ ( y ) = sup ⁡ x { ∑ i = 1 n y i x i − x 1 } = sup ⁡ x { ( y 1 − 1 ) x 1 + ∑ i = 2 n y i x i } , ∀ i ≥ 2 x i ≤ x 1 f^*(y)=\sup_x\{\sum^n_{i=1}y_ix_i-x_1\}=\sup_x\{(y_1-1)x_1+\sum^n_{i=2}y_ix_i\},\quad \forall i\ge 2\quad x_i\le x_1 f(y)=xsup{i=1nyixix1}=xsup{(y11)x1+i=2nyixi},i2xix1
    对于这样的线性形式,更容易分析上界的存在性。
    考虑最大化函数值的 x x x取值:固定 x 1 x_1 x1 x x x的其他所有分量前面的系数 y i y_i yi都是非负的,那么这些分量尽量取更大值,才能逼近上界。所以,我们不妨取 x = t 1 x=t\mathbf{1} x=t1,即各个分量相等的向量(每个分量都是最大值 t t t)。在这种情况下,
    f ∗ ( y ) = sup ⁡ x { ( y 1 − 1 ) x 1 + ∑ i = 2 n y i x i } = sup ⁡ t { t ( ∑ i = 1 m y i − 1 ) } f^*(y)=\sup_x\{(y_1-1)x_1+\sum^n_{i=2}y_ix_i\}=\sup_t\{t(\sum_{i=1}^m y_i-1)\} f(y)=xsup{(y11)x1+i=2nyixi}=tsup{t(i=1myi1)}我们发现,当且仅当 ∑ i y i = 1 \sum_iy_i=1 iyi=1时,函数才不是 t t t的线性函数,上界才存在。

因此,共轭函数为
f ∗ ( y ) = { 0 if y ⪰ 0 , ( y ⪯ 1 可 忽 略 ) 1 T y = 1 ∞ otherwise f^*(y)= \begin{cases} 0&\text{if}\quad y\succeq 0,(y\preceq 1可忽略)\quad \mathbf{1^T}y=1\\ \infty&\text{otherwise}\\ \end{cases} f(y)={0ify0,(y1)1Ty=1otherwise

(b)思路与(a)相似,我们仍分三步走:

  1. 首先,如果 y y y的分量中存在负值,那么与该分量对应相乘的 x x x分量取负无穷大时,显然是没有上界的,所以至少 y ⪰ 0 y\succeq 0 y0
  2. 其次,如果 y y y向量中存在某个大于1的的分量,那么当该分量对应的 x i x_i xi趋近于无穷大时,函数没有上界。
  3. 然后在 0 ⪯ y ⪯ 1 0\preceq y\preceq 1 0y1的基础上考虑问题,我们仍假设 x ∈ R n x\in\mathbf{R}^n xRn的各分量按从大到小排序:
    x 1 ≥ x 2 ≥ ⋯ ≥ x n x_1\ge x_2\ge\dots\ge x_n x1x2xn
    则共轭函数可以化为下面的形式:
    f ∗ ( y ) = sup ⁡ { ∑ i = 1 r ( y i − 1 ) x i + ∑ i = r + 1 n y i x i } f^*(y)=\sup\{\sum_{i=1}^r(y_i-1)x_i+\sum^n_{i=r+1}y_ix_i\} f(y)=sup{i=1r(yi1)xi+i=r+1nyixi}
    ,考虑最大化函数值的 x x x取值:因为前 r r r项求和的系数都是非正的,因此,固定 x r x_r xr这个第 r r r小的分量, x 1 , … , x r − 1 x_1,\dots,x_{r-1} x1,,xr1都取与 x r x_r xr相同的值,使前 r r r项之和最大; x j , j > r x_j,j>r xj,j>r的其他所有分量前面的系数 y i y_i yi都是非负的,那么对这些分量尽量取更大值以逼近上界,所以也都统一取 x r x_r xr。于是我们不妨令 x = t 1 x=t\mathbf{1} x=t1,即各个分量相等的向量(每个分量都是最大值 t t t)。在这种情况下,
    f ∗ ( y ) = sup ⁡ { ∑ i = 1 r ( y i − 1 ) x i + ∑ i = 2 n y i x i } = sup ⁡ { t ( ∑ i = 1 m y i − r ) } f^*(y)=\sup\{\sum_{i=1}^r(y_i-1)x_i+\sum^n_{i=2}y_ix_i\}=\sup\{t(\sum_{i=1}^m y_i-r)\} f(y)=sup{i=1r(yi1)xi+i=2nyixi}=sup{t(i=1myir)}
    当且仅当 ∑ i y i = r \sum_iy_i=r iyi=r时,函数才不是 t t t的线性函数,上界才存在。

综上,共轭函数为
f ∗ ( y ) = { 0 if 0 ⪯ y ⪯ 1 , 1 T y = r ∞ otherwise f^*(y)= \begin{cases} 0&\text{if}\quad 0\preceq y\preceq 1,\quad \mathbf{1^T}y=r\\ \infty&\text{otherwise}\\ \end{cases} f(y)={0if0y1,1Ty=rotherwise
(c)按照题干假设,函数 f f f m-1 \text{m-1} m-1个拐点,表达式为
x i = b i − b i + 1 a i + 1 − a i , i = 1 , . . . , m − 1 x_i=\dfrac{b_i-b_{i+1}}{a_{i+1}-a_i},\quad i=1,...,m-1 xi=ai+1aibibi+1,i=1,...,m1
容易求得,共轭函数为
f ∗ ( y ) = − b i − b i + 1 − b i a i + 1 − a i ( y − a i ) f^*(y)=-b_i-\dfrac{b_{i+1}-b_i}{a_{i+1}-a_i}(y-a_i) f(y)=biai+1aibi+1bi(yai)
其中 i i i定义为,满足 a i ≤ y ≤ a i + 1 a_i\le y\le a_{i+1} aiyai+1

  • 16
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值