矩阵的行列式,证明|A||B|=|AB|

证明|A||B|=|AB|

引理

1.下三角和上三角行列式的值等于对角线元素之积
2.任一方形行列式都可以通过行列倍加的操作转化为下三角行列式或者上三角形式且维持值不变。
3.由1和2可以推出下式:
∣ A k × k C k × n 0 B n × n ∣ = ∣ A k × k 0 C k × n B n × n ∣ = ∣ A k × k ∣ ∣ B n × n ∣ \left|\begin{matrix} A_{k\times k}&C_{k\times n}\\0&B_{n\times n} \end{matrix}\right|=\left|\begin{matrix} A_{k\times k}&0\\C_{k\times n}&B_{n\times n} \end{matrix}\right|=|A_{k\times k}||B_{n\times n}| Ak×k0Ck×nBn×n=Ak×kCk×n0Bn×n=Ak×kBn×n

证明

设两个n阶方阵 A = ( a i , j ) , B = ( b i , j ) A=(a_{i,j}),B=(b_{i,j}) A=(ai,j),B=(bi,j)。记2n阶行列式
D = ∣ A n × n 0 − E n × n B n × n ∣ = ∣ A ∣ ∣ B ∣ D=\left|\begin{matrix} A_{n\times n}&0\\-E_{n\times n}&B_{n\times n} \end{matrix}\right|=|A||B| D=An×nEn×n0Bn×n=AB
对D用行列倍加的操作消去右下角的B,便得到
D = ∣ A n × n C n × n − E n × n 0 ∣ = ( − 1 ) n ∣ − E ∣ ∣ C ∣ = ∣ C ∣ D=\left|\begin{matrix} A_{n\times n}&C_{n\times n}\\-E_{n\times n}&0 \end{matrix}\right|=(-1)^n|-E||C|=|C| D=An×nEn×nCn×n0=(1)nEC=C
其中可以得知C=AB.

因此有|A||B|=|AB|

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值