Pytorch快速入门系列---(十二)pytorch实现RNN网络对MNIST字体分类

本文介绍如何使用PyTorch的RNN网络对MNIST数据集进行手写数字分类。首先,准备数据集并定义数据加载器;接着,搭建RNN网络模型,包括设置输入和输出维度,以及隐藏层和全连接层;然后,训练和预测模型,展示训练过程中的损失和准确率变化;最后,展示了模型在训练和测试集上的表现,精度达到约0.97。
摘要由CSDN通过智能技术生成

 我们知道,循环神经网络RNN非常擅长处理序列数据,但它也可以用来处理图像数据,这是因为一张图像可以看作一组由很长的像素点组成的序列。下面将会使用RNN对MNIST数据集建立分类器。

目录

1.准备数据集、定义数据加载器

2.搭建RNN网络 

3.RNN网络的训练与预测


1.准备数据集、定义数据加载器

在进行数据准备工作时,可以直接从torchvision库的datasets模块导入MNIST手写字体的训练数据集和测试数据集,然后使用Data.DataLoader()函数将两个数据集定义为数据加载器,其中每个batch包含64张图像,最后得到训练集数据加载器train_loader与测试集数据加载器test_loader。在导入的数据集中,训练集包含60000张28×28的灰度图像,测试集包含10000张28×28的灰度图像。

#准备训练数据集
train_data=torchvision.datasets.MNIST(
    root="../Dataset",
    train=True,
    transform=transforms.ToTensor(),
    download=False
)
#定义一个数据加载器
train_loader=Data.DataLoader(
    dataset=train_data,
    batch_size=64,
    shuffle=True,
    num_workers=0
)
#准备测试数据集
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

城南皮卡丘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值