在计算机视觉领域,不仅有图像分类的任务,还有很多更复杂的任务,如对图像中的目标进行检测和识别,对图像进行实例分割和语义分割等。其中在基于卷积神经网络的深度学习算法出现后,图像的语义分割和目标检测的精度也有了质的提升。
一、常见的语义分割网络
语义分割是对图像在像素级别上进行分类的方法,在一张图像中,属于同一类的像素点都要被预测为相同的类,因此语义分割是从像素级别来理解图像。但是需要正确区分语义分割和实例分割,虽然它们在名称上很相似,但是它们属于不同的计算机视觉任务。例如,一张照片中有多个人,针对语义分割任务,只需将所有人的像素都归为一类即可,但是针对实例分割任务,则需要将不同人的像素归为不同的类。简单来说,实例分割会比语义分割所做的工作更进一步。
随着深度学习在计算机视觉领域的发展,提出了多种基于深度学习方法的图像语义分割网络,如FCN、U-Net、SegNet、DeepLab等。下面对FCN、U-Net、SegNet等网络结构进行一些简单的介绍,详细的内容读者可以阅读相关论文。
1.FCN
FCN语义分割网络是在图像语义分割文章Fully Convolutional Networks forSemantic Segmentation中提出的全卷积网络,该文章是基于深度网络进行图像语义分割的开山之作,而且是全卷积的网络,可以输入任意图像尺寸。其网络进行图像语义分割的示