Python3入门机器学习
2.7 数据归一化
数据归一化的作用:将所有的数据映射到同一尺度。
1.最值归一化:
通常归一化映射方式中最简单的一种方式被称作:最值归一化(normalization)。也就是把所有的数值映射到0–1之间。
最值归一化适用于分布有明显边界的情况。它有一个明显的缺点,就是受outlier(极端值)的影响比较大。
相应的一个改进的方式是用均值标准差归一化。
2.均值标准差归一化:
均值标准差归一化(standardlization):把所有的数据归一到均值为0标准差为1的分布中。
它适用于数据分布没有明显的边界的情况,并且若存在极端值这种方式较好。事实上,如果我们的数据有明显的边界,使用这种方式也是比较好的。一般都使用这种方式。
以下为具体的操作实例;