Python3入门机器学习之2.7数据归一化

Python3入门机器学习

2.7 数据归一化

数据归一化的作用:将所有的数据映射到同一尺度。
1.最值归一化:
通常归一化映射方式中最简单的一种方式被称作:最值归一化(normalization)。也就是把所有的数值映射到0–1之间。
在这里插入图片描述
最值归一化适用于分布有明显边界的情况。它有一个明显的缺点,就是受outlier(极端值)的影响比较大。
相应的一个改进的方式是用均值标准差归一化。
2.均值标准差归一化:
均值标准差归一化(standardlization):把所有的数据归一到均值为0标准差为1的分布中。

它适用于数据分布没有明显的边界的情况,并且若存在极端值这种方式较好。事实上,如果我们的数据有明显的边界,使用这种方式也是比较好的。一般都使用这种方式。
在这里插入图片描述
以下为具体的操作实例;
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值