实时交互数字人项目LiveTalking,支持数字人训练、克隆、全身,已支持mac gpu~

简介

“LiveTalking” 是一个开源的实时互动数字人直播系统,旨在提供高质量的数字人直播解决方案。它由开发者 lipku 主导,托管在 GitHub 上(地址:https://github.com/lipku/LiveTalking)。截至 2025 年 4 月,该项目已获得超过 5.1k 的星标和 750 多个 fork,显示出较高的社区关注度和活跃度。

项目概述

  • 目标:LiveTalking 致力于构建一个实时互动的数字人系统,能够实现音视频同步对话,支持直播、在线教育、虚拟客服等多种场景。

  • 核心特点:
    ** 实时性:通过流式传输技术(RTMP 或 WebRTC)实现低延迟的音视频互动。
    ** 多模型支持:集成了多种数字人模型,包括 ER-NeRF、MuseTalk、Wav2Lip 和 Ultralight-Digital-Human。
    ** 支持语音克隆
    ** 支持在数字人说话时打断它
    ** 支持全身视频拼接
    ** 支持rtmp和webrtc
    ** 支持视频编排:不说话时播放自定义视频
    ** 支持多并发

迭代记录

在这里插入图片描述

技术栈

LiveTalking 整合了多项前沿技术,技术复杂度较高

数字人模型

  • ER-NeRF:基于神经辐射场的渲染技术,用于生成高质量的数字人动画。

  • MuseTalk:支持实时唇形同步和面部动画。

  • Wav2Lip:经典的唇形同步模型,适用于音频驱动的视频生成。

  • Ultralight-Digital-Human:轻量化数字人解决方案,优化性能。

音视频处理

  • 支持 WebRTC 和 RTMP 协议,用于实时流传输。

  • 依赖 FFmpeg 处理音视频流。

看看效果

在这里插入图片描述

在这里插入图片描述

相关文献

github项目地址:https://github.com/lipku/LiveTalking
实际效果参考:https://www.bilibili.com/video/BV1gEc2e3Ep1/?spm_id_from=333.788.player.player_end_recommend_autoplay&vd_source=ef215224fd573c6ab6505c231b6be959

### 设置 Livetalking 和 Wav2Lip 输出视频的分辨率 对于希望提高由图像转换成视频后的输出质量,特别是针对Livetalking和Wav2Lip工具而言,可以采取特定的方法来设定输出视频的分辨率。 #### 对于 Livetalking 调整Livetalking输出视频的分辨率通常涉及修改配置文件中的参数或是命令行选项。具体来说,在运行程序之前,可以在启动脚本或配置文件中指定期望的高度和宽度作为目标分辨率。如果软件支持通过命令行传递这些参数,则可以直接在调用时加入相应的标志位。然而具体的实现方式取决于所使用的版本以及其文档说明[^1]。 ```bash livetalking --output_resolution=WIDTHxHEIGHT input_image output_video ``` 上述代码展示了一个假设性的例子,其中`WIDTHxHEIGHT`应替换为实际想要设置的具体数值,比如`1920x1080`代表全高清分辨率。 #### 针对 Wav2Lip 就Wav2Lip而言,改变输出视频尺寸的操作同样依赖于项目本身的特性。一般情况下,这可能涉及到编辑Python源码内的某些变量定义或者是利用预训练模型自带的数据处理函数来进行尺度变换。另外一种常见做法是在推理阶段应用OpenCV库读取帧并手动调整大小后再保存回磁盘。 ```python import cv2 def set_output_resolution(frame, width, height): return cv2.resize(frame, (width, height), interpolation=cv2.INTER_LINEAR) # 假设frame是从摄像头或者其他地方获取的一帧画面 resized_frame = set_output_resolution(frame, 1920, 1080) cv2.imwrite('high_res_output.mp4', resized_frame) ``` 这段Python代码片段提供了一种简单的方式来更改单个图像帧的尺寸;当应用于连续多帧即构成完整的视频流时便能有效提升整体画质。值得注意的是,为了保持最佳效果,建议尽可能使用高质量的初始素材,并考虑采用更先进的超分辨率技术来增强细节表现力[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cherry Xie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值