📖 项目介绍
LiveTalking 是一个实时交互式数字人直播系统,支持实时音视频对话,可实现商业级效果。本项目基于开源框架 [LiveTalking](https://github.com/lipku/LiveTalking) 进行二次开发,提供完整的部署方案和商业化支持。可代跑项目,欢迎大家交流讨论~
🤖 项目来源:
lipku/LiveTalking: Real time interactive streaming digital human
✨ 主要特性
- 支持多种数字人模型
- wav2lip - 精准唇形同步
- ernerf - 3D真实渲染
- musetalk - 丰富表情系统
- Ultralight-Digital-Human - 轻量级模型
- 🗣️ 语音克隆功能
- ⚡ 实时打断与响应
- 🎬 支持全身视频拼接
- 📡 双协议推流(RTMP/WebRTC)
- 🎭 支持视频编排
- 🚀 多并发支持
🛠️ 环境要求
- 操作系统: Ubuntu 20.04 LTS
- Python版本: 3.10
- CUDA版本: 11.3
- GPU要求: NVIDIA显卡(8GB+显存)
- 内存要求: 16GB以上
- 存储空间: 100GB以上
📦 快速开始
1. 环境配置
```bash
# 创建conda环境
conda create -n nerfstream python=3.10
conda activate nerfstream
# 安装PyTorch
conda install pytorch==1.12.1 torchvision==0.13.1 cudatoolkit=11.3 -c pytorch
# 安装依赖
pip install -r requirements.txt
```
2. 模型下载
从以下链接下载预训练模型:
- 夸克网盘: https://pan.quark.cn/s/83a750323ef0
- Google Drive: https://drive.google.com/drive/folders/1FOC_MD6wdogyyX_7V1d4NDIO7P9NlSAJ
下载后配置:
(1) 将 `wav2lip256.pth` 复制到 `models` 目录并重命名为 `wav2lip.pth`
(2)解压 `wav2lip256_avatar1.tar.gz` 到 `data/avatars` 目录
3. 启动服务
```bash
# 如果无法访问huggingface,请先设置镜像
export HF_ENDPOINT=https://hf-mirror.com
# 启动服务
python app.py --transport webrtc --model wav2lip --avatar_id wav2lip256_avatar1
```
访问 `http://服务器IP:8010/webrtcapi.html` 进行测试
4. Docker部署
```bash
docker run --gpus all -it --network=host --rm registry.cn-beijing.aliyuncs.com/codewithgpu2/lipku-metahuman-stream:2K9qaMBu8v
```
🔧 高级配置
1.端口配置
- WebRTC: TCP 8010
- UDP: 1-65536
2.模型训练
如需训练ernerf模型,需要安装额外依赖:
```bash
pip install "git+https://github.com/facebookresearch/pytorch3d.git"
pip install tensorflow-gpu==2.8.0
pip install --upgrade "protobuf<=3.20.1"
```
可代跑项目,欢迎大家交流讨论~