代跑LiveTalking 数字人项目

 📖 项目介绍

LiveTalking 是一个实时交互式数字人直播系统,支持实时音视频对话,可实现商业级效果。本项目基于开源框架 [LiveTalking](https://github.com/lipku/LiveTalking) 进行二次开发,提供完整的部署方案和商业化支持。可代跑项目,欢迎大家交流讨论~

 🤖 项目来源:

lipku/LiveTalking: Real time interactive streaming digital human

✨ 主要特性

  - 支持多种数字人模型

  - wav2lip - 精准唇形同步

  - ernerf - 3D真实渲染

  - musetalk - 丰富表情系统

  - Ultralight-Digital-Human - 轻量级模型

- 🗣️ 语音克隆功能

- ⚡ 实时打断与响应

- 🎬 支持全身视频拼接

- 📡 双协议推流(RTMP/WebRTC)

- 🎭 支持视频编排

- 🚀 多并发支持

 🛠️ 环境要求

- 操作系统: Ubuntu 20.04 LTS

- Python版本: 3.10

- CUDA版本: 11.3

- GPU要求: NVIDIA显卡(8GB+显存)

- 内存要求: 16GB以上

- 存储空间: 100GB以上

 📦 快速开始

1. 环境配置

```bash

# 创建conda环境

conda create -n nerfstream python=3.10

conda activate nerfstream

# 安装PyTorch

conda install pytorch==1.12.1 torchvision==0.13.1 cudatoolkit=11.3 -c pytorch

# 安装依赖

pip install -r requirements.txt

```

2. 模型下载

从以下链接下载预训练模型:

- 夸克网盘: https://pan.quark.cn/s/83a750323ef0

- Google Drive: https://drive.google.com/drive/folders/1FOC_MD6wdogyyX_7V1d4NDIO7P9NlSAJ

下载后配置:

(1) 将 `wav2lip256.pth` 复制到 `models` 目录并重命名为 `wav2lip.pth`

(2)解压 `wav2lip256_avatar1.tar.gz` 到 `data/avatars` 目录

 3. 启动服务

```bash

# 如果无法访问huggingface,请先设置镜像

export HF_ENDPOINT=https://hf-mirror.com

# 启动服务

python app.py --transport webrtc --model wav2lip --avatar_id wav2lip256_avatar1

```

访问 `http://服务器IP:8010/webrtcapi.html` 进行测试

4. Docker部署

```bash

docker run --gpus all -it --network=host --rm registry.cn-beijing.aliyuncs.com/codewithgpu2/lipku-metahuman-stream:2K9qaMBu8v

```

🔧 高级配置

1.端口配置

- WebRTC: TCP 8010

- UDP: 1-65536

2.模型训练

如需训练ernerf模型,需要安装额外依赖:

```bash

pip install "git+https://github.com/facebookresearch/pytorch3d.git"

pip install tensorflow-gpu==2.8.0

pip install --upgrade "protobuf<=3.20.1"

```

可代跑项目,欢迎大家交流讨论~

### 数字人 LiveTalking 技术实现概述 数字人 LiveTalking 的核心技术主要涉及以下几个方面:自然语言处理(NLP)、语音合成(TTS, Text-to-Speech)、自动语音识别(ASR, Automatic Speech Recognition)、面部动画生成以及实时流媒体传输。以下是这些技术的具体应用及其可能的实现方式: #### 自然语言处理 (NLP) 为了使数字人能够理解用户的输入并作出相应的回应,通常会采用大模型来生成回答文本[^1]。这种模型可以基于上下文生成连贯且语义丰富的回复。 #### 语音合成 (TTS) 一旦有了由 NLP 模型生成的文字内容,下一步就是将其转换成声音文件。这一步可以通过成熟的 TTS 工具完成,例如 Google 的 Tacotron 或者 NVIDIA 的 FastPitch 和 HiFi-GAN 组合[^3]。通过这样的组合,可以获得高质量的人类相似度的声音输出。 #### 自动语音识别 (ASR) 为了让数字人能听懂用户说的话,需要引入 ASR 技术将音频信号转化为文字数据。常见的开源项目有 Kaldi、DeepSpeech 等,它们提供了强大的声学建模功能以适应不同的口音和背景噪音条件。 #### 面部表情与动作捕捉 对于视觉呈现部分,则需要用到像 Unreal Engine 中 Metahuman 这样先进的角色创建工具来进行基础人物模型的设计工作[^2]。之后再利用机器学习算法预测说话时嘴唇运动轨迹以及其他细微变化从而驱动虚拟形象做出逼真反应。 #### 实时交互平台搭建 最后,在完成了上述所有模块开发之后还需要考虑如何把这些组件集成起来形成一个流畅用户体验的产品。这里涉及到服务器端的基础环境配置以及客户端展示界面设计等内容。比如使用 WebRTC 协议支持低延迟双向通讯;或者借助 WebSocket 来保持长久连接以便快速传递消息更新状态等等。 ```python import numpy as np from scipy.io.wavfile import write def generate_audio(text_input): """Generate audio from text input.""" # Placeholder function representing a complex pipeline including NLP and TTS. sample_rate = 44100 # Standard CD quality duration_seconds = len(text_input.split()) / 5 # Approximate speech rate of 5 words per second t = np.linspace(0., duration_seconds, int(sample_rate * duration_seconds)) frequency = 440. # A note at 440 Hz generated_signal = 0.5 * np.sin(2. * np.pi * frequency * t) write('output.wav', sample_rate, generated_signal.astype(np.float32)) generate_audio("This is an example sentence being converted to sound.") ``` 以上代码片段仅用于演示目的,并未实际包含任何具体 AI 模型调用逻辑。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值