文章目录
- 一、双圆弧轨迹插值拟合算法
- 二、正余弦曲线插值拟合算法
- 三、基于三次、五次多项式曲线拟合算法的路径插值及平滑
- 四、贝塞尔曲线
- 五、B样条曲线
-
- (1)B样条曲线理论
- (2)B样条的源码实现
-
- (1)步骤一:【设置参数部分】设置非均匀B样条参数,计算节点表setUniformBspline
- (2)步骤二:【计算部分】给定一个时刻t, 计算B样条该控制点的位置坐标值evaluateDeBoorT()【Cox-DeBoor公式公式】
- (3)步骤三:【调用部分】输入A*类探索的初始控制点point_set,获取B样条优化的位置控制点ctrl_pts [parameterizeToBspline()]
- (4)步骤四:计算非均匀B样条一阶及二阶微分,获取轨迹的速度、加速度
- (5)步骤五:检查位置、速度、加速度、曲率可行性,并进行时间调整
- (6)步骤六:获取/设置基本bspline信息方向函数
- (7)步骤七:用于执行评估方向函数
- (3)应用示例
- (4)参考资料
机器人局部轨迹规划相关教程及博客请关注专栏:
https://blog.csdn.net/qq_35635374/article/details/138174730
移动机器人规划控制合集(这个比较全面):
https://blog.csdn.net/qq_35635374/article/details/142830798
本文先对使用曲线拟合的进行插值与平滑做个简单的介绍,具体内容后续再更,其他模块可以参考去我其他文章
常用的曲线拟合方法包括双圆弧轨迹插值拟合算法、正余弦曲线插值拟合算法、三/五次多项式曲线(三/五次样条)拟合算法、mini_snap的时间分配曲线优化生成轨迹算法、贝塞尔曲线算法、B样条曲线算法等。这些方法各自具有独特的特性和适用场景,下面将详细探讨这些方法的原理和应用:
- 双圆弧轨迹插值