21-10-2 收敛数列

Q1

  • { x n } \{x_n \} {xn}非负数列,满足

x n + 1 ≤ x n + 1 n 2 ( n ∈ N + ) x_{n+1} \leq x_n + \frac1{n^2}(n\in \N_+) xn+1xn+n21(nN+)

证明: { x n } \{x_n \} {xn}收敛

构造性证明:

观察题目条件,应该去证明 { x n } \{x_n \} {xn}单调有界
0 ≤ x n ≤ x n − 1 + 1 ( n − 1 ) 2 ≤ x n − 2 + 1 ( n − 2 ) 2 + 1 ( n − 1 ) 2 ≤ ⋯ ≤ x 1 2 + 1 + 1 2 + ⋯ + 1 ( n − 1 ) 2 < x 1 2 + 2 − 1 n − 1 < x 1 2 + 2 \begin{aligned} 0\leq x_n &\leq x_{n-1}+\frac{1}{(n-1)^2}\\ &\leq x_{n-2} + \frac{1}{(n-2)^2} + \frac{1}{(n-1)^2}\\ &\leq \cdots\\ &\leq x_1^2 +1 + \frac12 + \cdots + \frac{1}{(n-1)^2}\\ &< x_1^2 +2 - \frac{1}{n-1}\\ &< x_1^2 +2 \end{aligned} 0xnxn1+(n1)21xn2+(n2)21+(n1)21x12+1+21++(n1)21<x12+2n11<x12+2
{ x n } \{x_n \} {xn}有界已证,但是无法证明单调,故尝试构造新数列


x n + 1 ≤ x n + 1 n 2 x_{n+1} \leq x_n + \frac1{n^2} xn+1xn+n21
可得
x n + 1 − ∑ k = 1 n 1 k 2 ≤ x n − ∑ k = 1 n − 1 1 k 2 y n + 1 ≤ y n x_{n+1} - \sum_{k=1}^{n}\frac{1}{k^2} \leq x_n - \sum_{k=1}^{n-1}\frac{1}{k^2}\\ y_{n+1} \leq y_n xn+1k=1nk21xnk=1n1k21yn+1yn
{ y n } \{y_n\} {yn}为单调递减数列
y n = x n − ∑ k = 1 n − 1 1 k 2 y_n = x_n - \sum_{k=1}^{n-1}\frac{1}{k^2} yn=xnk=1n1k21
又由 { ∑ k = 1 n − 1 1 k 2 } \{\sum\limits_{k=1}^{n-1}\frac{1}{k^2}\} {k=1n1k21}是有界收敛的数列,故而 { y n } \{y_n\} {yn}也有界

由单调有界收敛定理知: { y n } \{y_n\} {yn}收敛
x n = y n + ∑ k = 1 n − 1 1 k 2 x_n = y_n + \sum_{k=1}^{n-1}\frac{1}{k^2} xn=yn+k=1n1k21
由极限的四则运算知, { x n } \{x_n\} {xn}收敛

Q2

证明一个数列发散:去证明该数列比一个 → ∞ \to \infty 的数列更大

证明收敛:3. 极限的四则运算,可以表示成多个收敛的数列;2. 压缩数列; 1. 单调有界

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值