Q1
- { x n } \{x_n \} {xn}非负数列,满足
x n + 1 ≤ x n + 1 n 2 ( n ∈ N + ) x_{n+1} \leq x_n + \frac1{n^2}(n\in \N_+) xn+1≤xn+n21(n∈N+)
证明: { x n } \{x_n \} {xn}收敛
构造性证明:
观察题目条件,应该去证明
{
x
n
}
\{x_n \}
{xn}单调有界
0
≤
x
n
≤
x
n
−
1
+
1
(
n
−
1
)
2
≤
x
n
−
2
+
1
(
n
−
2
)
2
+
1
(
n
−
1
)
2
≤
⋯
≤
x
1
2
+
1
+
1
2
+
⋯
+
1
(
n
−
1
)
2
<
x
1
2
+
2
−
1
n
−
1
<
x
1
2
+
2
\begin{aligned} 0\leq x_n &\leq x_{n-1}+\frac{1}{(n-1)^2}\\ &\leq x_{n-2} + \frac{1}{(n-2)^2} + \frac{1}{(n-1)^2}\\ &\leq \cdots\\ &\leq x_1^2 +1 + \frac12 + \cdots + \frac{1}{(n-1)^2}\\ &< x_1^2 +2 - \frac{1}{n-1}\\ &< x_1^2 +2 \end{aligned}
0≤xn≤xn−1+(n−1)21≤xn−2+(n−2)21+(n−1)21≤⋯≤x12+1+21+⋯+(n−1)21<x12+2−n−11<x12+2
{
x
n
}
\{x_n \}
{xn}有界已证,但是无法证明单调,故尝试构造新数列
由
x
n
+
1
≤
x
n
+
1
n
2
x_{n+1} \leq x_n + \frac1{n^2}
xn+1≤xn+n21
可得
x
n
+
1
−
∑
k
=
1
n
1
k
2
≤
x
n
−
∑
k
=
1
n
−
1
1
k
2
y
n
+
1
≤
y
n
x_{n+1} - \sum_{k=1}^{n}\frac{1}{k^2} \leq x_n - \sum_{k=1}^{n-1}\frac{1}{k^2}\\ y_{n+1} \leq y_n
xn+1−k=1∑nk21≤xn−k=1∑n−1k21yn+1≤yn
故
{
y
n
}
\{y_n\}
{yn}为单调递减数列
y
n
=
x
n
−
∑
k
=
1
n
−
1
1
k
2
y_n = x_n - \sum_{k=1}^{n-1}\frac{1}{k^2}
yn=xn−k=1∑n−1k21
又由
{
∑
k
=
1
n
−
1
1
k
2
}
\{\sum\limits_{k=1}^{n-1}\frac{1}{k^2}\}
{k=1∑n−1k21}是有界收敛的数列,故而
{
y
n
}
\{y_n\}
{yn}也有界
由单调有界收敛定理知:
{
y
n
}
\{y_n\}
{yn}收敛
x
n
=
y
n
+
∑
k
=
1
n
−
1
1
k
2
x_n = y_n + \sum_{k=1}^{n-1}\frac{1}{k^2}
xn=yn+k=1∑n−1k21
由极限的四则运算知,
{
x
n
}
\{x_n\}
{xn}收敛
Q2
证明一个数列发散:去证明该数列比一个 → ∞ \to \infty →∞的数列更大
证明收敛:3. 极限的四则运算,可以表示成多个收敛的数列;2. 压缩数列; 1. 单调有界