数学分析(二)-数列极限2-收敛数列的性质4:保不等式性【设{aₙ}、{bₙ}均为收敛数列;若存在正数N₀使得当n>N₀时有aₙ≤bₙ,则limaₙ≤limbₙ】

本文介绍了数学分析中的一个重要定理——保不等式性,即如果两个收敛数列{an}和{bn}满足an≤bn在n>N0时恒成立,那么它们的极限也满足liman≤limbn。通过详细证明和举例说明,阐述了该定理的内涵及其应用。同时,引导读者思考在an<bn的条件下极限关系的变化。
摘要由CSDN通过智能技术生成

定理 2.5 (保不等式性)

{ a n } \left\{a_{n}\right\} { an} { b n } \left\{b_{n}\right\} { bn} 均为收敛数列. 若存在正数 N 0 N_{0} N0, 使得当 n > N 0 n>N_{0} n>N0 时, 有 a n ⩽ b n a_{n} \leqslant b_{n} anbn, 则 lim ⁡ n → ∞ a n ⩽ lim ⁡ n → ∞ b n \lim \limits_{n \rightarrow \infty} a_{n} \leqslant \lim \limits_{n \rightarrow \infty} b_{n} nlimannlimbn.


lim ⁡ n → ∞ a n = a , lim ⁡ n → ∞ b n = b \lim \limits_{n \rightarrow \infty} a_{n}=a, \lim \limits_{n \rightarrow \infty} b_{n}=b nliman=a,nlimbn=b. 任给 ε > 0 \varepsilon>0 ε>0, 分别存在正数 N 1 N_{1} N1 N 2 N_{2} N2, 使得当 n > N 1 n>N_{1} n>N1时, 有

a − ε < a n , ( 1 ) a-\varepsilon<a_{n}, \quad\quad(1) aε<a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值