数学分析(二)-数列极限2-收敛数列的性质6:收敛数列的四则运算法则

本文介绍了数列极限的四则运算法则,包括数列之和、差、积的极限行为,并给出了证明。通过几个例子展示了如何利用这些法则求解数列极限问题,如求解复合分数、几何级数等特殊情况的极限值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在求数列极限时, 常需要使用极限的四则运算法则.

定理 2.7 (四则运算法则)

{ a n } \left\{a_{n}\right\} { an} { b n } \left\{b_{n}\right\} { bn} 为收敛数列, 则 { a n + b n } , { a n − b n } \left\{a_{n}+b_{n}\right\},\left\{a_{n}-b_{n}\right\} { an+bn},{ anbn}, { a n ⋅ b n } \{a_{n} \cdot b_{n}\} { anbn} 也都是收敛数列,且有
lim ⁡ n → ∞ ( a n ± b n ) = lim ⁡ n → ∞ a n ± lim ⁡ n → ∞ b n lim ⁡ n → ∞ ( a n ⋅ b n ) = lim ⁡ n → ∞ a n ⋅ lim ⁡ n → ∞ b n \begin{array}{l} \lim \limits_{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=\lim \limits_{n \rightarrow \infty} a_{n} \pm \lim \limits_{n \rightarrow \infty} b_{n} \\[4ex] \lim \limits_{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=\lim \limits_{n \rightarrow \infty} a_{n} \cdot \lim \limits_{n \rightarrow \infty} b_{n} \end{array} nlim(an±bn)=nliman±nlimbnnlim(anbn)=nlimannlimbn

特别当 b n b_{n} bn 为常数 c c c 时, 有

lim ⁡ n → ∞ ( a n + c ) = lim ⁡ n → ∞ a n + c , lim ⁡ n → ∞ c a n = c lim ⁡ n → ∞ a n . \lim \limits_{n \rightarrow \infty}\left(a_{n}+c\right)=\lim \limits_{n \rightarrow \infty} a_{n}+c,\\[4ex] \lim \limits_{n \rightarrow \infty} c a_{n}=c \lim \limits_{n \rightarrow \infty} a_{n} . nlim(an+c)=nliman+c,nlimcan=cnliman.

若再假设 b n ≠ 0 b_{n} \neq 0 bn=0 lim ⁡ n → ∞ b n ≠ 0 \lim \limits_{n \rightarrow \infty} b_{n} \neq 0 nlimbn=0, 则 { a n b n } \left\{\cfrac{a_{n}}{b_{n}}\right\} { bnan} 也是收敛数列, 且有

lim ⁡ n → ∞ a n b n = lim ⁡ n → ∞ a n lim ⁡ n → ∞ b n \begin{array}{l} \lim \limits_{n \rightarrow \infty} \cfrac{a_{n}}{b_{n}} =\cfrac{\lim \limits_{n \rightarrow \infty} a_{n}}{\lim \limits_{n \rightarrow \infty} b_{n} } \end{array} nlimbnan=nlimbnnliman


由于 a n − b n = a n + ( − 1 ) b n a_{n}-b_{n}=a_{n}+(-1) b_{n} anbn=a</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值