在求数列极限时, 常需要使用极限的四则运算法则.
定理 2.7 (四则运算法则)
若 { a n } \left\{a_{n}\right\} {
an} 与 { b n } \left\{b_{n}\right\} {
bn} 为收敛数列, 则 { a n + b n } , { a n − b n } \left\{a_{n}+b_{n}\right\},\left\{a_{n}-b_{n}\right\} {
an+bn},{
an−bn}, { a n ⋅ b n } \{a_{n} \cdot b_{n}\} {
an⋅bn} 也都是收敛数列,且有
lim n → ∞ ( a n ± b n ) = lim n → ∞ a n ± lim n → ∞ b n lim n → ∞ ( a n ⋅ b n ) = lim n → ∞ a n ⋅ lim n → ∞ b n \begin{array}{l} \lim \limits_{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=\lim \limits_{n \rightarrow \infty} a_{n} \pm \lim \limits_{n \rightarrow \infty} b_{n} \\[4ex] \lim \limits_{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=\lim \limits_{n \rightarrow \infty} a_{n} \cdot \lim \limits_{n \rightarrow \infty} b_{n} \end{array} n→∞lim(an±bn)=n→∞liman±n→∞limbnn→∞lim(an⋅bn)=n→∞liman⋅n→∞limbn
特别当 b n b_{n} bn 为常数 c c c 时, 有
lim n → ∞ ( a n + c ) = lim n → ∞ a n + c , lim n → ∞ c a n = c lim n → ∞ a n . \lim \limits_{n \rightarrow \infty}\left(a_{n}+c\right)=\lim \limits_{n \rightarrow \infty} a_{n}+c,\\[4ex] \lim \limits_{n \rightarrow \infty} c a_{n}=c \lim \limits_{n \rightarrow \infty} a_{n} . n→∞lim(an+c)=n→∞liman+c,n→∞limcan=cn→∞liman.
若再假设 b n ≠ 0 b_{n} \neq 0 bn=0 及 lim n → ∞ b n ≠ 0 \lim \limits_{n \rightarrow \infty} b_{n} \neq 0 n→∞limbn=0, 则 { a n b n } \left\{\cfrac{a_{n}}{b_{n}}\right\} { bnan} 也是收敛数列, 且有
lim n → ∞ a n b n = lim n → ∞ a n lim n → ∞ b n \begin{array}{l} \lim \limits_{n \rightarrow \infty} \cfrac{a_{n}}{b_{n}} =\cfrac{\lim \limits_{n \rightarrow \infty} a_{n}}{\lim \limits_{n \rightarrow \infty} b_{n} } \end{array} n→∞limbnan=n→∞limbnn→∞liman
证
由于 a n − b n = a n + ( − 1 ) b n a_{n}-b_{n}=a_{n}+(-1) b_{n} an−bn=a</