TITS 2024 | 用于交通场景中多目标同时检测与跟踪的 Yolo - 3DMM 模型

论文信息

题目:Yolo - 3DMM for Simultaneous Multiple Object Detection and Tracking in Traffic Scenarios
用于交通场景中多目标同时检测与跟踪的 Yolo - 3DMM 模型
作者:LiChen Liu, XiangYu Song, HuanSheng Song, ShiJie Sun, Xian - Feng Han, Naveed Akhtar, Ajmal Mian

论文创新点

  1. 提出新型3D特征骨干网络:受Darknet - 53启发,提出Darknet3d - 53。该网络同时处理多个帧及其3D检测结果,能有效进行三维时空特征和轨迹运动提取,通过在时间维度卷积,提升了提取物体运动信息的能力,相比2D结构网络,能检测到更多运动轨迹,更适合检测运动轨迹
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值