TPAMI 2025 | 基于图循环网络的文本理解预训练

论文信息

题目:Pre-Training a Graph Recurrent Network for Text Understanding
中文题目:基于图循环网络的文本理解预训练
作者:Yile Wang, Linyi Yang, Zhiyang Teng, Ming Zhou, Yue Zhang

论文创新点

  1. 提出全新架构:论文提出基于图循环网络(GRN)的模型架构,创新性地将每个句子构建为具有局部令牌级通信的图结构,并配有独立于其他普通令牌的句子级表示,从而避免使用Transformer架构中的自注意力机制,使模型具备线性时间复杂度。
  2. 设计独特节点更新机制:在编码层,该模型严格遵循S-LSTM的节点通信方式,使用子词和位置嵌入,并添加层归一化。在更新节点状态时,通过类似LSTM的门控机制,并行更新令牌节点和句子节点的状态,使得模型在处理句子时能实现并行计算,
### TPAMI 2025论文趋势与领域发展 #### 跨模态学习的趋势 随着跨模态技术的发展,TPAMI 2025 的研究可能更加关注语言和视觉之间的深层次交互。例如,在少样本类增量学习中,利用语言引导的关系迁移(Language-guided Relation Transfer, LRT),能够有效提升模型在新类别上的泛化能力[^3]。这种技术不仅依赖于传统的视觉特征提取,还引入了文本语义信息,使得模型能够在少量标注数据的情况下快速适应新的任务。 #### 增量学习中的知识迁移 在增量学习方面,TPAMI 2025 可能进一步探索如何通过知识迁移减少灾难性遗忘的影响。具体而言,基于结构的知识表示模块 \(M_{\text{graph}}\) 已经展现出显著的优势,其增量准确率可达到 39.32%[^3]。未来的研究可能会更深入地探讨如何设计高效的神经网络架构,以便更好地捕捉不同类别间的复杂关系,并将其应用于动态环境下的连续学习场景。 #### 领域自适应与风格化学习 对于领域自适应问题,TPAMI 2025 或将继续推进风格化学习的方法论创新。当前已有研究表明,通过模拟过去领域的输入分布,可以在一定程度上缓解领域级别的灾难性遗忘[^1]。此外,为了应对未见过的新领域,预测器需要具备更强的泛化能力,而这通常可以通过增加训练过程中遇到的数据多样性来实现。预计未来的算法将进一步优化这一过程,使模型不仅能处理已知领域的变化,还能高效扩展至未知领域。 #### 视觉原型的作用机制 关于视觉原型的应用,现有工作已经证明它们可以作为调整特征的重要上下文信息[^2]。在未来的工作中,研究人员或许会尝试构建更为灵活的视觉原型更新策略,允许在不破坏原有知识的前提下逐步融入新增加的信息。这种方法有望为解决长期存在的类别级灾难性遗忘提供一种全新的思路。 ```python import torch.nn as nn class VisualPrototypeModule(nn.Module): def __init__(self, num_classes, feature_dim): super().__init__() self.prototype = nn.Parameter(torch.randn(num_classes, feature_dim)) def forward(self, features): prototypes = self.prototype.unsqueeze(0).expand(features.size(0), -1, -1) return torch.cat([features, prototypes], dim=-1) ``` 此代码片段展示了一个简单的视觉原型模块的设计方式,它可以直接嵌入到现有的深度学习框架中用于增强特征表达。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值