U-LanD:基于不确定性的视频地标检测

U-LanD是一个基于不确定性的视频地标检测框架,尤其适用于标签稀疏和噪声的情况。它利用深度贝叶斯地标检测器的预测不确定性识别关键帧,从而在心脏超声成像视频中自动检测地标,显著优于非贝叶斯模型。
摘要由CSDN通过智能技术生成

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

小白导读

论文是学术研究的精华和未来发展的明灯。小白决心每天为大家带来经典或者最新论文的解读和分享,旨在帮助各位读者快速了解论文内容。个人能力有限,理解难免出现偏差,建议对文章内容感兴趣的读者,一定要下载原文,了解具体内容。

摘要

本文提出了一个联合检测视频关键帧和地标的框架U-LanD。我们解决了一个特别具有挑战性的问题,训练标签是有噪声和高度稀疏的。U-LanD建立在一个关键的观察基础上:一个只在关键视频帧上训练的深度贝叶斯地标检测器,与视频中的其他帧相比,这些帧的预测不确定性显著降低。我们使用这个观察作为一个无监督信号自动识别关键帧,我们检测地标。作为我们框架的测试平台,我们使用心脏的超声成像视频,其中稀疏和嘈杂的临床标签只能用于每个视频的单个帧。使用4493例患者的数据,我们证明U-LanD在R方评分上的绝对优势显著地超过了最先进的非贝叶斯模型,达到42%,几乎没有模型大小的负担。我们的方法是通用的,可以潜在地应用于其他具有噪声和稀疏训练标签的具有挑战性的数据。

论文创新点

我们证明了U-LanD在具有挑战性数据集的稀疏注释数据上的有效性,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值