AIGC文生图最新技术!GAN杀回来了!

2023年,AIGC领域的GigaGAN技术取得重大突破,特别是Adobe研究院的模型提升了推理速度和图像生成质量。研梦非凡将举办直播课程解析GigaGAN,涵盖模型结构、损失函数和应用实例,助力AIGC研究者和技术从业者掌握最新进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2023年,AIGC文生图技术迎来复兴之年,继英伟达的StyleGAN-T模型升级,来自Adobe研究院,被CVPR收录的GigaGAN论文,对于传统GAN的规模限制等问题,实现了重大突破,尤其是推理速度的显著提高,甚至超过了扩散模型,图像生成效果也不容小觑。

9e60f39bb5f4d8a7e9cf83b31d14c9df.png

为了让大家快速掌握最新技术, 研梦非凡 特请来了该领域的科研大牛研发《GigaGAN:扩展GAN的规模用于文本到图像合成》前沿直播课,带你从GAN掌握图像生成模型!226fd81b53c4acd054f65e3172d98763.png

▼ 扫码免费约直播课!

16e08ac8200542e02aec505defc69a94.png 

免费领!180余篇AIGC,扩散模型,GAN改进论文资料+50小时 3080 GPU算力

🎁 免费课程福利至文末

3015cd57908a8b315620eb549dbf74a8.gif

fd63a98710b26bb88fd065a5bbc1f3bf.png

▎直播课主题

《前沿论文解析系列—GigaGAN:扩展GAN的规模用于文本到图像合成》

▎直播课时间

2月28日、29日(周三、四),连播两天!

▎直播课内容

1️⃣ 论文摘要

2️⃣ 研究背景

StyleGAN2、Attention、CLIP 、MSG-GAN 、Vision-Aided GAN、LAION-5B

3️⃣ 模型结构

模型框架(基于StyleGAN2的条件版本进行改进)、生成器、样本自适应的卷积核选择、Attention与卷积的结合、判别器、超分辨率

4️⃣ 损失函数

Matching-aware loss、CLIP contrastive loss、Vision-aided adversarial loss

5️⃣ 文本到图像

🔘 消融实验> 基于Studio GAN PyTorch库实现GigaGAN,遵循标准FID评估方法和抗锯齿bicubic resize函数,使用LAION2B-en和COYO-700M数据集联合训练

736a62216f6f2a0f1946b52e261f0475.png

🔘 模型比较> 与最近的文本到图像模型进行了比较,在训练数据集、迭代次数、批量大小和模型大小方面存在相当大差异

6️⃣ 超分辨率和图像编辑

◽️ 超分辨率> GigaGAN上采样器在真实感得分(FID和patch-FID)、文本对齐(CLIP得分)和接近GT(LPIPS)方面显著优于其他上采样器

◽️ 图像编辑> GigaGAN继承了StyleGAN的latent编辑能力,拥有解缠的隐空间

7️⃣ 结论和展望

新架构让GAN扩展到可实现较高质量文本到图像合成的模型尺寸,为大规模生成模型开辟了一个全新的设计空间,并带回了非常重要的图像编辑功能

8️⃣ 论文总结

关键点、启发点

▼ 扫码免费约直播课!

22d48a3291e2000a2b568cd6984509a9.png 

免费领!180余篇AIGC,扩散模型,GAN改进论文资料+50小时 3080 GPU算力

🎁 免费课程福利至文末

f837978f09673ddd72b9760591b958ce.gif

▎导师简介

李导师 

百度算法专家,主要研究方向为AIGC图像合成、图像视频增强与质量评价。

主导过图像/视频增强、图像/视频质量评价和AIGC数据合成等项目,对GAN、扩散模型等有着丰富的实践经验。多媒体领域顶会论文一作。

▎适合人群

AIGC或文生图技术研究者(本硕博等);AIGC或文生图技术相关从业者;对于AIGC或文生图技术感兴趣,或有意向转行的小伙伴。

▎直播课报名方式

▼ 扫码免费约直播

62ddbbc0ae5de0f180e0fcc61db38586.png 

免费领!180余篇AIGC,扩散模型,GAN改进论文资料+50小时 3080 GPU算力

🎁 免费课程福利至文末

f277266bee7264208c8ad5d32a680f0d.gif

8e0d07a4f572ee3d335442ed87d51712.png

不仅限于机器学习、深度学习、CV、NLP等人工智能方向的同学,还包括本硕博毕业、升学、评职称所需的SCI各区位期刊、CCF各类会议、EI期刊/会议等1V1论文定制化指导(不代写!)定制化指导介绍如下▼

- 第一阶段/选题规划阶段

👉part1:制定学习规划(基础)

  • 导师1v1meeting,判断学员基础,定制学员专属学习规划

  • 明确论文需求和指导服务需求,定制合作细节

👉part2:了解领域前沿动态、发展趋势

  • 梳理领域经典&前沿算法模型

  • 掌握领域发展概况,学习领域经典网络,了解最新发展

👉part3:沟通讨论确定选题方向

  • 根据学员研究方向、研究基础,给予论文研究方向建议:推荐目前较火热的领域及方向

  • 评估该领域出论文的可行性

👉part4:1v1定制指导idea

⭐导师学生语音沟通讨论,头脑风暴双方的想法、创新点的技术支撑以及其可行性,最终定版。

- 第二阶段/实验阶段

👉part5:主流算法讲解

  • 具体拆解分析经典 

  • 前沿算法模型,帮助理解算法重难点

👉part6:跑通基础baseline代码

  • 输出经验总结

  • 专业代码老师针对性指导

👉part7:跑通子分支baseline

  • 优化改善代码、输出实验数据

  • 导师在专属学员群个性化解决疑难杂症

- 第三阶段/论文写作阶段

👉part8:论文写作实践操作、案例分析

  • 列举1~2份经典/优秀论文案例

  • 深度剖析,提炼框架/模版

👉part9:搭建论文框架

  • 针对实验结果呈现、论文各模块写作技巧,给予个性化方案

👉part10:论文初稿评估与反馈

  • 论文初稿针对性润色

- 第四阶段/投稿阶段

👉part11:选刊建议

  • 推荐合适期刊,精准投稿

👉part12:投稿流程指导

  • 导师全流程跟进学员投稿

👉part13:中稿后复盘

  • 讨论该研究方向是否可延申新论文

  • 本次论文投稿经验总结

▼ 扫码预约直播+约相关方向导师meeting

🎁 现享导师meeting新春优惠价

2738fa10019475b37be9b1adcdd3dde5.png 

免费领!180余篇AIGC,扩散模型,GAN改进论文资料+50小时 3080 GPU算力

🎁 免费课程福利至文末

39f83d4edebb7badddf4b58ca28582c3.gif

▎导师团队

研梦拥有一支实力强大的高学历导师团队,在计算机科学、机器学习、深度学习等领域,积累了丰富的科研经历,研究成果也发表在国际各大顶级会议和期刊上,在指导学员的过程中,全程秉持初心,坚持手把手个性化带教。

142554558aa684a61495c0cc8dd93dc0.png

6cd3b4aa8b1522a63c391d6467069fe9.png

d5bddc76ee519c62ed8b7ffbbdf06d1b.png

d97e94e929af8986f6578a8693e80002.png

c303dd483dac10df7ee41607efce9af9.png

<

滑动查看下一张图片

>

▼ 扫码预约直播+了解更多导师信息

🎁 现享导师meeting新春优惠价

ad9069c26ab1b2b1a9ed652aa973cb97.png 

免费领!180余篇文生图必读论文资料+50小时 3080 GPU算力

免费课程科研福利如下👇

e8b1a5c114789ac85641091cb6f2a85f.png

💡人工智能零基础入门课免费领

AI形成和未来 | Python速通 | Pytorch速通

💡7小时科研论文写作系列课免费领

科研基础知识 | 投稿经验攻略 | LLaMA论文实操 | 投稿后注意事项 | 论文写作理论篇  | 论文写作实践篇  | 会议如何rebuttal?

💡14节前沿论文直播课程免费领

CV方向  | NLP/大模型方向  | 推荐系统方向

💡GPU算力免费领

50小时 3080 GPU算力

💡论文资料免费领

百篇大语言模型/分割大模型前沿&180余篇文生图科研必读论文(GAN/扩散模型) | 顶会顶刊论文

▼ 扫码免费领取以上5重科研福利!

12c2644d450f0cdb160eae563f67b99b.png

998f0f80762ffbeb760df8b1395f262b.png

▎公司介绍

 研梦非凡 隶属于苏州研途教育科技有限公司,研途深耕教育辅导行业13年,具备丰富行业从业经验和教学资源,拥有科学系统的专业院校分析与规划服务,专业师资团队也深受学生信赖和喜爱。2023年,苏州研途教育获批工业和信息化人才培养工程培训基地(工业和信息化部直批)。

c0164740e37f8eccfa1248ed6dd1c678.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值