Understanding and Mitigating Dimensional Collapse in Federated Learning
题目:理解并缓解联邦学习中的维度塌缩问题
作者:Yujun Shi , Jian Liang , Member, IEEE, Wenqing Zhang , Chuhui Xue ,
Vincent Y. F. Tan , Senior Member, IEEE, and Song Bai
源码:https://github.com/bytedance/FedDecorr.
摘要
联邦学习旨在在不同客户端之间协作训练模型,而无需共享数据以考虑隐私问题。然而,这种学习范式的一个主要挑战是数据异质性问题,这指的是不同客户端之间本地数据分布的差异。为了解决这个问题,我们首先研究了数据异质性如何影响全局聚合模型的表示。有趣的是,我们发现异质性数据导致全局模型遭受严重的维度塌陷,其