【荐读IEEE TPAMI】理解并缓解联邦学习中的维度塌缩问题

本文研究了联邦学习在数据异质性环境下出现的维度塌陷问题,指出局部模型和全局模型的维度塌陷是主要原因。提出了一种名为 FEDDECORR 的新方法,通过在本地训练阶段应用正则化项,有效减轻维度塌陷,提高模型性能。在CIFAR10、CIFAR100、TinyImageNet等多个数据集上,FEDDECORR展示了优于基线方法的性能,并在各种异质性设置下表现稳定。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Understanding and Mitigating Dimensional Collapse in Federated Learning

题目:理解并缓解联邦学习中的维度塌缩问题

作者:Yujun Shi , Jian Liang , Member, IEEE, Wenqing Zhang , Chuhui Xue ,
Vincent Y. F. Tan , Senior Member, IEEE, and Song Bai

源码:https://github.com/bytedance/FedDecorr.


摘要

联邦学习旨在在不同客户端之间协作训练模型,而无需共享数据以考虑隐私问题。然而,这种学习范式的一个主要挑战是数据异质性问题,这指的是不同客户端之间本地数据分布的差异。为了解决这个问题,我们首先研究了数据异质性如何影响全局聚合模型的表示。有趣的是,我们发现异质性数据导致全局模型遭受严重的维度塌陷,其

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值