题目:Graph Transformer GANs With Graph Masked Modeling for Architectural Layout Generation
基于图掩码建模的图变换器生成对抗网络用于建筑布局生成
作者:H. Tang; L. Shao; N. Sebe; L. Van Gool
摘要
我们提出了一种新颖的图变换器生成对抗网络(GTGAN),用于端到端学习有效的图节点关系,以解决具有挑战性的图约束建筑布局生成任务。所提出的基于图变换器的生成器包括一个新颖的图变换器编码器,该编码器结合了图卷积和自注意力机制,以模拟连接和未连接图节点之间的局部和全局交互。具体来说,我们提出的连接节点注意力(CNA)和非连接节点注意力(NNA)旨在分别捕获输入图中连接节点和非连接节点的全局关系。此外,我们提出的图建模块(GMB)旨在基于房屋布局拓扑利用局部顶点交互。我们同样提出了一种新的基于节点分类的鉴别器,以保留不同房屋组件的高级语义和区分性节点特征。为了保持真实图和预测图之间的相对空间关系,我们还提出了一种新颖的基于图的循环一
订阅专栏 解锁全文
173

被折叠的 条评论
为什么被折叠?



